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ABSTRACT

Following the analysis of differentiable mappings of Y. Yomdin, M. Gro-
mov has stated a very elegant “Algebraic Lemma” which says that the
“differentiable size” of an algebraic subset may be bounded only in terms
of its dimension, degree and diameter, regardless of the size and specific
values of the underlying coefficients. We give a complete and elementary
proof of Gromov’s result.

1. Introduction

A semi-algebraic set is a subset of some R? defined by a finite number of poly-
nomial inequalities and equalities. Its degree is the sum of the total degrees
of the polynomials involved. A semi-algebraic map is a map whose graph is a
semi-algebraic set and the degree of the map is the degree of the set. Necessary
definitions and basic properties of real semi-algebraic geometry are recalled in
the third section.

Y. Yomdin [8] developed many tools around “quantitative Sard Lemmas”
involving the differentiable size of semi-algebraic sets. M. Gromov observed that
one of these tools could be refined to give the following very elegant statement:

THEOREM 1 (Yomdin-Gromov’s algebraic Lemma): Let r, | and d be posi-
tive integers. For any semi-algebraic compact subset A C [0,1]¢ of dimension
l, there exist an integer N and continuous semi-algebraic maps ¢1,...,¢nN :
[0,1]" — [0,1]¢, such that:
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e ¢; is analytic on ]0,1[};
. ||¢]f[||r i=maxg: g/<, 0°i 1011 lso < 1
o Uity il(0,1]") = A.
Moreover N and deg(¢;) are bounded by a function of deg(A), d and r.

In his Séminaire Bourbaki [12], M. Gromov gives many ideas but stops short
of a complete proof. In [15], [16], Y. Yomdin used a weaker version of the
previous theorem. In this initial form, the parametrizations omitted a subset
covered with at most Clog(1/a) cubes of radius «, for arbitrarily small o > 0.
This version was sufficient for the dynamical applications presented in [15], [16].

By using polynomial Taylor’s approximation, this theorem gives estimates of
the local complexity of smooth maps. Yomdin used it to compare the topological
entropy and the “homological size” for C" maps. S. Newhouse [13] showed, using
Pesin’s theory, how this gives, for C*° smooth maps, upper-semicontinuity of the
metric entropy and therefore the existence of invariant measures with maximum
entropy. J. Buzzi [6] observed that, in fact, Y. Yomdin’s estimates give a more
uniform result called asymptotic h-expansiveness, which was shown by M. Boyle,
D. Fiebig and U. Fiebig [3] to be equivalent to the existence of principal symbolic
extensions for C*>° smooth maps. The dynamical consequences of the above
theorem are still developing in the works of M. Boyle, T. Downarowicz, S.
Newhouse and others [11], [4].

The theorem is trivial for d = 1: the semi-algebraic subsets of [0, 1] are the
finite unions of subintervals of [0,1]. We deal with the 2-dimensional case as
suggested by M. Gromov. This simple and instructive case is the subject of
Section 5. We prove the general case by induction using the notion of (C*, K)
triangular maps introduced in Section 2. The induction steps are of three types:

e we consider a semi-algebraic map defined on a semi-algebraic set of
higher dimension and we bind the first derivative in the first coordinate.

e fixing the dimension of the semi-algebraic set, we bind the derivatives
of the next higher order with respect to the first coordinate.

e fixing the dimension of the semi-algebraic set and the order of deriva-
tion, we bind the next partial derivative for a total order on N¢,

As T was completing the submission of this paper, I learned that Pila and
A. Wilkie had written a proof of the same theorem [14]. T am grateful to
M. Coste for this reference.
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2. Technical tools

Yomdin-Gromov’s Lemma is proved by controlling the derivatives consecutively.
This is possible by the notion of triangular maps, which already appears in
Y. Yomdin’s works [16].

2.1. TRIANGULAR MAPS.

Definition 1: A map v : ]0,1['—]0, 1[¢ is triangular if | < d and if

Y= (Yi(w1, .. m), . Va2, 20),

Ya—iy2(T2, .. 21), oy Ya—igpk(Th, oy 20), -2 Yal@)),

for a family of maps (v; : ]0, 1[PPE4H1=0 510, 1) =1, a-

Fact 1: If ¢ : ]0,1[™—]0,1[? and ¢ : ]0,1["—]0, 1[™ are triangular, then so is
Yo¢:]0,1["—]0, 1[".

2.2. (C*, K) maPs. First we introduce the order on N? used for the induction
in the proof of Yomdin-Gromov’s algebraic lemma.

Definition 2: N¢ is endowed with the order <, defined as follows: for a =
(1y...saq), B=(B1,-..,0a) € NI, a =2 Bif (a = B) either (o] :== >, i < |B])
or (Ja| = || and oy < Bk, where k := max{l <d : o # 51}).

In fact, we have o« =< f if and only if (|o|, aq,a4-1,...,01) precedes
(18, Bas Ba—1, - - -, /1) in the usual lexicographic order.

Definition 3: Let K € RT, a € N — {0}. Let A C]0,1[¢ be an open set. A
map f: A — RFisa (C* K) map, if f := (f1,..., fr) is a Cl*l map and if
1 £lla := maxg<a1<i<k [|07 filloo < K.

If « = (0,0...,0,7) (i.e., all the partial derivatives of fof order up to r
are bounded by K), we write (C", K) and ||, instead of (C(*~0") K) and
-l 0,....0.m)-

2.3. CoMPOSITION OF (C*,1) MAPS. The two following lemmas deal with the

composition of (C%, 1) maps.

LEMMA 1: For all d,r € N*, there exists a real number K = K(d,r), such that
if 1, ¢ : ]0,1[%—]0,1[* are two (C",1) maps, then 1) o ¢ is a (C", K) map.
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Proof. It follows directly from the formula of Faa-di-bruno for the higher deriva-

tives of a composition (See [1, p. 3]), which we recall for completeness: let
¥, ¢ :10,1[4—]0,1[? be two C” maps and let (hy,...,h,) € (RY)", we have 2

D7'(¢o¢)(x)(h1,...,h7.): Z Z Uq(ila---,iq)

1<q<r in,..iq

X qu((ﬁ(x))(D“ ¢(z)(h17 R hil)v SR Diq(b(z)(hT*qurlv cees hT));

where the second sum is over all nonzero integers i1, ..., i, satisfying
a
E I =T |
k=1

We shall need the following adaptation of Lemma 1 to triangular maps.
LEMMA 2: For all d,r € N*, there exists a real K = K(r,d) such that if

¥, ¢ :10,1[4—]0,1[¢ are two (C*,1) maps with |a| = r and if ¢ is a triangular
map, then ¢ o ¢ is a (C%, K) map.

We introduce some notation for the proof of Lemma 2. Let (e;)i=1,....q be the
canonical basis of R%. For i = 1,...,d, V; C R? is the vector space generated
by €1y...,6€4.

For a € N¢ with |a] = 7, v® = (e1,...,€1,---,€d,---,€4) € (RH)" and

N—— N——
a1 aq
VOi=Vy X xVpx--x Vgx - x Vg C (RY)". Observe that, for a C" map
—_——— —_———
[e%% Qq

f:10,1[9=]0,1[¢, we have 0, f(x) = D" f(z)(v®).

Fact 2: Let 1 < k < d be an integer. Let f := (f1,..., fa) : ]0,1[¢=]0,1[¢ be a
C! triangular map. Then for all z €]0, 1[¢, 0., f(z) € Vj.

Proof. Let [ > k be an integer. The map f being triangular,

filz) = filwr, ..., 2q)
and therefore we have 9,, fi = 0. |
Fact 3: Let f :]0,1[%—]0,1[¢ be a C" map. Let a € N? with |a| = r and

w € V. Then D"f(z)(w) = >_;<,wsdsf(x), where wg is a polynomial in
the coordinates of w, of which the coefficients depend only on r and d. If

. . r—1-YF 4
04(217 ce Zq) = HOSkSq—l ( 1"—2?}1112'1 )

2
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w = (v1,...,va) € (RY)", we have wo = [[,_; 47, where v;; denotes the
ith coordinate of v;.
Proof. For
we{er} x--x{er}x---x{ey,ea,...,eqt x - x{er,ea,...,eqt C Va,
—_—

[e%% Qq
it follows from the definition of the order <. We conclude the proof by multi-
linearity. |

Lemma 2 is easily implied by the following

Fact 4: Let o € N with |a| = 7. Let ¥, ¢ : ]0,1[¢—]0, 1[¢ be two C" maps. We
assume also, that ¢ is a triangular map. Then

Oa(¥ 0 0)(x) = Datp(9(2)) [T @edil@)™ + R(@p¢,0,6: 6 < ',y 2 ),

where R is a polynomial depending only on r and d.

Proof. Let (v1,...,vq) := vs. Using the formula of Faa-di-bruno, we only have
to consider the general term

DUp(¢(z)) (D" $(2) (1, -, Vi )y oo, D9(@) (Vr—iy 11, - -+, 0r))

for some nonzero integers i1, ..., i, satisfying > {_, ix = r. We have only to
study the two following cases (only derivatives of ¢ and ¢ of order < r are
involved in the other terms):

e ¢=1and i; =r > 1: the corresponding term is

Dy(¢(x)) (D" d(x)(v)) = DY (¢(2))(0ad())-

Therefore, this term contains also only derivatives of ¥ of order < «
and derivatives of ¢ of order < a.
e g=rand i =iy =--- =1, = 1: the corresponding term is

Dy(¢(x)) (02,0, - - -, 0y &, ..., 02,0, ..., 02,0).
—_——— —_——
[e5] (e %)
By Fact 2, (04,0, ..., 00, @y.ovyOuyby. .., 0r,0) € V. Then we apply
— —— —_————

aqd

a
Fact 3 to get the desired result. |

1Leta,BENd,ﬁ<aifandonlyifﬁjaandﬁ;ﬁa.
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3. Real semi-algebraic geometry

In this section we recall basic results concerning semi-algebraic sets. We borrow
them from [2], [7] and [9].

3.1. SEMI-ALGEBRAIC SETS AND MAPS.

Definition 4: A C R? is a semi-algebraic set if it can be written as a finite
union of sets of the form

{z eRY: Py(x) >0,...,P(z) >0,Pryy(z) =0,...,Pys(x) =0},

where r,s € N and Pi,...,Pys € R[Xy,...,X4] . Such a formula is called a
presentation of A.

The degree of a presentation is the sum of the total degrees of the polynomials
involved (with multiplicities). The degree deg(A) of a semi-algebraic set A
is the minimum degree of its presentations.

Remark that the number of polynomials occurring in a presentation of a
semi-algebraic set is bounded by the degree of this presentation.

Definition 5: f : A C RY — R" is a semi-algebraic map if the graph I'y :=
{(z, f(x)) : x € A} C R x R™ of f is a semi-algebraic set. The degree deg(f)
of a semi-algebraic map f is the degree of its graph I'y.

Definition 6: A Nash manifold is a real analytic submanifold of R?, which is
also a semi-algebraic set.

A Nash map is a map defined on a Nash manifold, which is both analytic
and semi-algebraic.

3.2. TARSKI’S PRINCIPLE.

THEOREM 2 (Tarski’s principle): Let A C R4l be a semi-algebraic set and
7 : R — R the projection defined by m(x1,...,2411) = (71,...,24), then
m(A) is a semi-algebraic set and deg(n(A)) is bounded by a function of deg(A)
and d.

Proof. See [7, Theorem 2.2.1]. &

COROLLARY 1: Any formula combining sign conditions on semi-algebraic func-
tions by conjunction, disjunction, negation and universal and existential real
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quantifiers defines a semi-algebraic set. Moreover the degree of this semi-
algebraic set is bounded by a function of the degrees of the semi-algebraic
functions involved in the formula.

Proof. See [7, Proposition 2.2.4]. |

COROLLARY 2: Let f : A C R — R" be a semi-algebraic map, then A and
f(A) are semi-algebraic sets. Moreover, deg(A) and deg(f(A)) are bounded by
a function of deg(f),d and n.

Proof. Immediate. |

COROLLARY 3: If ¢ and v are two semi-algebraic maps, such that the compo-
sition ¢ o 1 is well-defined, then ¢ o 1) is a semi-algebraic map. Moreover, its
degree is bounded by a function of deg(¢) and deg(v).

Proof. See [7, Proposition 2.2.6]. 1

COROLLARY 4: Let 7 € N. Let A C R? be a semi-algebraic open set and let
f A — R" be a Nash map. The partial derivatives of f of order r are also
semi-algebraic maps of degree bounded by a function of deg(f), d, n and r.

Proof. See [7, Proposition 2.9.1]. |

3.3. CONTINUOUS STRUCTURE OF SEMI-ALGEBRAIC SETS. We recall now clas-
sical results concerning the structure of semi-algebraic sets. The first results
deal with stratification and the last ones with decomposition into cells.

PROPOSITION 1: For any semi-algebraic subset A C]0,1[*! | there exist inte-
gersm, qi, . . ., qm, disjoint Nash manifolds Ay, ..., A, C]0,1[¢ and Nash maps,
Gin < -+ <Cigq A —]0,1[, for all 1 <1i < m, such that:

e A coincides with a union of slices of the following two forms {(z1,y) €
J0,1[x A = Gr(y) <21 < Gitr(y)} and {(Gr(y),y) 1y € Aiks

o the integers m, ¢;, deg(A;), deg((i,;) are bounded by a function of
deg(A) and d.

Proof. This is Theorem 2.2.1 in [2] except that there the maps (; are only
claimed to be continuous. Using Thom’s Lemma, we can assume, that ¢; , are
Nash maps, as noticed in Remark 1 of [9]. n
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We let adh(H), int(H) and OH denote the closure, the interior and the bound-
ary, respectively, of the set H C R¢ for the usual topology.
For open semi-algebraic sets, we have the following result.

COROLLARY 5: For any semi-algebraic open subset A C|0,1[?*!, there exist
integers m, qi,...,qm, disjoint semi-algebraic open sets Ay,...,A,, C|0,1[
and Nash maps, (i1 < -+ < (;q, + A; —]0,1][, for all 1 <14 < m, such that:

e adh(A) coincides with a union of slices of the following form

adh({(z1,9y) €]0,1[xA; : Gir(y) <71 < Gr+1(y)});

o the integers m, ¢;, deg(A;), deg((i,;) are bounded by a function of
deg(A) and d.

Proof. Let A C]0,1[?*! be a semi-algebraic open set. We apply Proposition 1
to A, and keep only the slices of the form

{(z1,y) €]0,1[xA; : Gr(y) < x1 < Girs1(y)}s

where A; is an open set. Let us check that the closure of these slices is adh(A).
Let x+ € A and let U C A be an open neighborhood of z. If the dimen-
sion of A; is strictly less than d, then the slices {(¢;x(y),y) : v € A;} and
{(z1,y) €]0,1[xA4; : Gr(y) < 21 < G r+1(y)} have empty interior. Therefore
the open set U C A cannot intersect only such slices. We conclude that = €
U : asis openy 2dh({(z1, ) €]0,1[xA; = Gr(y) < 21 < Gir+1(y)}), and then
ACUyg . aiis openy 2d0({(z1, ) €]0,1[XA; : G r(y) <21 < Gr+1(y)}). B

PRroOPOSITION 2: Let A C R™ be a semi-algebraic set. There exist an integer N
bounded by a function of deg(A) and connected Nash manifolds A1, ..., Ay such
that A =T, A; and Vi # j (A;Nadh(4;) # 0) = (A; C adh(A;) et dim(A;)
< dim(A;)). (11 : disjoint union).

Proof. See [9, Proposition 3.5, p. 124]. |

Definition 7: In the notation of the previous proposition, the dimension of A
is the maximum of the dimensions of the Nash manifolds A1,..., An.

In the following corollary, we reparametrize a semi-algebraic set with Nash
maps of bounded degree. The point of Yomdin-Gromov’s algebraic lemma is
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that one can bound the differentiable size of the reparametrizations. The corol-
lary 6 is a stronger form of Theorem 2.3.6 in [7], so we produce a detailed
proof.

Definition 8: Let A C]0,1[% be a semi-algebraic set of dimension [. A family of
maps (¢; : ]0,1['— A)i=t

e cach ¢; is triangular;

~ is a resolution of A if:

.....

e each ¢; is a Nash map;

e A= Ul]\il ¢i(10,1[") 2.

Let M € N. A M-resolution of A is a resolution of A, (¢;)i=1,... . n, such
that:
e N<M;
o deg(és) < M.
Any semi-algebraic set A C]0,1[¢ admits a resolution, (¢;)i=1, . n, with N

and deg(¢;) bounded by a function of deg(A) and d. In a formal way:

COROLLARY 6: Given integers d, ¢, there exists an integer M = M (d, ¢), such
that any semi-algebraic set A C]0, 1[¢ of degree < § admits a M -resolution.

Proof. We argue by induction on d. We denote P(d) the claim of the above
corollary for semi-algebraic subsets of ]0,1[%. P(0) is trivial. Assume P(d).
Let A C]0,1[¢"! be a semi-algebraic set of dimension [. Proposition 1 gives
us integers m, qi, . . . , ¢m, disjoint Nash manifolds A1, ..., A,, C]0,1[¢ and Nash
maps, ;1 < -+ < (g : Ai —]0,1[ such that:
e A coincides with a union of slices of the two following forms {(z1,y) €
J0,1[XA; 2 Gr(y) < @1 < Gir1(y)} and {(Ge(y),y) : y € Ai}
o m, g;, deg(A;), deg((;, ;) are bounded by a function of deg(A) and d.
We note I; the dimension of A;; we have: [; < [. Apply the induction hy-
pothesis to A; C]0, 1[?. There exists a resolution of 4;, i.e., an integer N; and
Nash maps ¢;1,...,¢in, : ]0,1[%— A;, such that A; = UIJ)V:1 $i (10, 1[') and
N;, deg(¢;) are bounded by a function of deg(A4;) and d, therefore by a function
of deg(A) and d.
First, we consider a slice of the form

{(z1,y) €]0,1[xA; : G(y) <21 < Grsr(y)}

2 by convention 10,1[°= {0}.




300 DAVID BURGUET Isr. J. Math.

Observe that the dimension [; of the Nash manifold A; is, in this case, strictly
less than [. Then, we define 1; 1, : |0, 1['— A as follows: ;. p (21,22, ..., 7)) =
(@1(Gikr1 —Gik) 0 Pip(Ta, ..o Tl41) Gk 0 Pip(T2, ..o, Tl41), Gip), for 1 < p <
N;.

Consider now a slice of the form {(¢; x(y),v) : y € A;}. We define

ik o]0, 1[0, 1[4

as follows: ¥ pp(x1,...,21) = (G © Gip(T1,...,21,), Gip(z1,...,21,)), for
1<p<N;

The family of maps F := (i x,p)i,kp is @ M-resolution, with M depending
only on d and deg(A):

e each v; 1., is a Nash triangular map;

A= Ui,k,p Yikp(]0, 10h;

the cardinal of F is bounded by 337", ¢; N;;

each deg(1; k p) is bounded by a function of deg(A) and d, according to
Corollary 3. ]

A limit of semi-algebraic maps of bounded degree is again a semi-algebraic
map.

COROLLARY 7: Let (f, : ]0,1[¢—]0,1[%),en be a sequence of continuous semi-
algebraic maps of degree < ¢, such that (f,)nen converges uniformly to
f :10,1[¢— [0,1]*. Then f is a continuous semi-algebraic map of degree
bounded by a function of d, k and §.

Proof. Tt is enough to prove the corollary for k = 1.

Let (fn :]0,1[%=]0,1])nen be a sequence of semi-algebraic maps of degree
< 4. For all n € N, there exists P, € R[X1,..., Xq441] — {0} of degree < §, such
that P, (x1,...,7q,1/44 fo(z1,...,24)/2) =0, V2 := (21, ...,24) €]0,1[% The
set R[X7,..., X441] of polynomials in d+ 1 variables is endowed with the norm:
| Pl :== supyena+1 [aal, for P =3 a1 aa X By dividing P, by [|P,||, we
can choose ||P,|| = 1. Then, by extracting a subsequence, we can assume that
P, — P #0, with deg(P) < ¢. It is easy to check that P(xz,1/4+ f(x)/2) = 0.
By applying Proposition 1 to { P = 0} )]0, 1[**! (we consider 1/4+ f,,/2 instead
of f,, because f(x) might be on the boundary of [0, 1]¢) and by continuity of f,
we conclude there exists a partition of |0, 1[? into Nash manifolds (Ai)i=1,..N
and Nash maps (; : 4; —]0, 1] with N and deg((;) bounded by a function of §
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and d, such that I'y /4y /2 = J;—;  nT¢;- In particular, f is a semi-algebraic

map o f degree bounded by a function of § and d. |

3.4. C*-RESOLUTION OF SEMI-ALGEBRAIC SETS AND NASH MAPS. In this sec-
tion, we define notions to estimate the differentiable size of semi-algebraic sets
and maps.

Definition 9: A Nash map f: A C R? — R"” is extendable if f extends contin-
uously on adh(A).

Notation 1: Let f: A C R — R™ be a extendable Nash map. We denote by f
the unique continuous extension of f.

Remark 1: This extension is unique by continuity of f. By using Corollary 1,
observe that f is a semi-algebraic map and that deg(f) is bounded by a function

of deg(f).

Definition 10: Let K € R*. Let A C]0,1[ be a semi-algebraic set of dimension
l. Let o € Nl — {0}. The family of maps (¢; : ]0,1['— A);—1__n is a (C%, K)-
resolution of A if:

.....

e each ¢; is triangular;
e each ¢; is a (C*, K) extendable Nash map;
o adh(4) = UL, &i((0.1]").
Let M € N. A (C%, K, M)-resolution of A is a (C*, K)-resolution of A,
(¢i)i=1,... .~ , such that:
e N M;
o deg(és) < M.

Definition 11: Let K € R*. Let fi,..., fr : A —]0,1] be semi-algebraic maps,
where A C]0,1[¢ is a semi-algebraic set, of dimension I. Let o € N' — {0}. The

..........

e each ¢; is triangular;
o each ¢; and each f; o ¢; is a (C%, K) extendable Nash map;
o adh(4) = Ui, 6:((0.11).
Let M € N. A (C* K, M)-resolution of (f;)j=1, %, (¢i)i=1,..N, IS &
(C*, K)-resolution of (f;)j=1,...x such that:
o N < M,



302 DAVID BURGUET Isr. J. Math.

e deg(¢:i) < M and deg(f;o¢i) < M.

If a = (0,0,...,0,7), we write (C", K), (C", K, M) instead of (C(%07") K),
(€00 K M).

Remark 2: A C“-resolution of a semi-algebraic set A is in a obvious way a
C“-resolution of the characteristic function of A.

To prove Yomdin-Gromov’s algebraic lemma, we take limits of parametriza-
tions of a semi-algebraic set close to A, so that these limits reparametrize
adh(A). That is why in the definition of a C*-resolution above we reparametrize
adh(A), contrary to Definition 8 of a resolution.

The following remark is very useful later on:

LEMMA 3: Given an integer d and a real number N, there is an integer
M = M(N,d), such that for any a € N¢ — {0} and for any (C®, N) Nash
map f :]0,1[?—]0, 1], there exists a (C®, 1, M)-resolution of f.

Proof. We use homothetic reparametrizations of |0, 1[¢. The details are left to
the reader. |

3.5. (o, M)-ADAPTED SEQUENCE. We will use the following notion to prove
Yomdin-Gromov’s algebraic lemma:

Definition 12: Let o € N4 — {0} and M € N. Let (f; : A —]0,1[)i=1
family of Nash maps defined on a semi-algebraic open set A C]0, 1[¢. A sequence

.....

(o, M)-adapted to (fi)i=1,... k is a sequence (A, )nen of semi-algebraic sets, such
that:

e A, C AforeachneN;

® a, = sup,c,d(z, Ay) —— 0, where d(z, A,) is the distance be-

tween x and A,,;
o deg(A,) < M,
e (fija,)i=1,.. .k admits a (C*, 1, M)-resolution.

If a=(0,0...,r), we write (r, M) instead of ((0,...,0,7), M).

4. Statements

Given a family of semi-algebraic functions, we shall first reparametrize them
away from their singularities. Then we prove the main theorem.
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PROPOSITION 3: For any family (f; : A —]0,1[)s=1,...x of Nash maps defined on
a semi-algebraic open set A C0,1[%, there exists a (r, M )-adapted to (fi)i=1... k;
with M depending only on d,r and max;(deg(f;)).

The next proposition follows from the above:

PROPOSITION 4: For any family (f; : A —]0,1[);=1,...x of Nash maps de-
fined on a semi-algebraic open set A C]0,1[¢, there is a (C",1, M)-resolution
of (fi)i=1,...k, with M depending only on d,r and max;(deg(f;)).

We deduce the following proposition from Propositions 1 and 4:

PROPOSITION 5: For any semi-algebraic set A C|0,1[%, there exists a (C",1, M)
resolution of A, with M depending only on d,r and deg(A).

Now we show how Propositions 3, 4 and 5 and Yomdin-Gromov’s algebraic
lemma follow from the case k& = 1 of Proposition 3. In fact, we show stronger
results, which are used in the induction in the last section.

Notation 2: Let E = [J;5,(N? — {0}) x {d} together with the order: (8,e) <
(a,d) if (e <d)or (e=dand §=a)
We write (r,d) instead of ((0,...,0,7),d) € E.

The order <« coincides with the lexicographic order of (d, |al, a4, ..., a1).
Notation 3: Fix (a,d) € E and k € N. We will write Q3(«, d, k), Q4(a,d, k),
Q5(a, d, k) for the following claims:

Q3(«,d, k): for any family (f; : A —]0,1[);=1,...x of Nash maps defined on

a semi-algebraic open set A C]0,1[%, there exists a sequence («, M )-adapted to
(fi)i=1,... k, with M € N depending only on max;(deg(f;)).

Q4(a, d, k): for any family (f; : A —]0,1[);=1,..., of Nash maps defined
on a semi-algebraic open set A C]0,1[%, there exists a (C", 1, M)-resolution of
(fi)i=1,...x, with M € N depending only on max;(deg(f;)).

Q5(c, d): for any semi-algebraic set A C]0, 1[¢, there exists a (C", 1, M) res-
olution of A, with M € N depending only on deg(A).

In the statements of Propositions 3 and 4, we only need to reparametrize a
single Nash map:

LEMMA 4: The claim Q4(«,d, 1) implies the claim Q4(«,d, k) for all k € N*.
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Proof. We argue by induction on k. Assume Q4(«,d,l), for I < k: for any
I-families g1,...,9; : B —]0,1[ of Nash maps of degree < 6, with B |0, 1[*
a semi-algebraic open set, there is a (C%,1, M)-resolution of ¢1,...,¢;, with
M = M(l,9).

Let fi,..., frr1 : A —]0,1[ be Nash maps of degree < §, with A C|0,1[¢ a
semi-algebraic open set. In the following, for each | < k, we denote M; =
M(1,8). According to the induction hypothesis, there exists (¢;)i=1,.. v &
(C*, 1, M)-resolution of (fi,...,fr). By Q4(«a,d) for k = 1, for each i, we
can find (¢ ;)j=1,..~; a (C* 1, My)-resolution of fr41 o ¢;.

According to Lemma 2, the maps ¢; 0v; j, of which the number is vazl N; <
M My, are (C*, K) extendable Nash maps, with some K = K(|a|,d). The
same holds for the maps f, o ¢; o ¢; ; for all 1 < p < k. We control the degree
of these Nash maps by applying Corollary 3. For each ¢, (¢;,;);=1,...,n, being a
(C*,1)-resolution of fiy1 o ¢;, the maps fry1 © ¢; o ¢); ; are (C*, 1) extendable
Nash maps. Moreover, we have in a trivial way: adh(4) =, ; b; o@;([O, 1]9).
We conclude the proof of Q4(«,d, k + 1) by applying Lemma 3. |

LEMMA 5: The claim Q3(«,d, 1) implies the claim Q3(«,d, k) for all k € N*.

Proof. We adapt the above proof for Q3(«,d) as follows (we use the same
notation). Let (A, )nen be a sequence a- adapted to (fl)l 1.... k. Hence, for all
n € N, there exists (¢});=1

J, let (A 7)pen be a sequence a- adapted to frt10 7.

.....

..........

We use the following remark, which is an easy consequence of the uniform
continuity:
Remark 3: Tf (A,),en is a sequence of subsets of [0, 1] satisfying

sup d(z,Ap) —— 0
z€0,1]! n—+00

and ¢ : [0,1]" — [0,1]? is a continuous map, then

sup  d(z, ¢(A,)) ——— 0.
2€([0,1)1) e
According to the above remark for ¢7, we can choose an integer p; », for each
n € N and each 1 < j < N, such that SUPe4m (10,1]4) d(z, gb”(Ag]Jn)) < 1/n.

Now, let us show that B, = U P qﬁ?(A;}Jz]n) defines a sequence a-adapted to
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Observe that B, is a semi-algebraic set because each ¢} is a semi-alge-
braic map and each A} is a semi-algebraic set. Moreover, N, deg(d)?) and
deg(A} ) and therefore deg(B,,) are bounded by a function of max;(deg(f;)),
|a] and d. Finally, we have:

sup d(z, By,) < supd(x, Ap) + max ( sup d(x,(b?(AZ?j )))
ey zeA =L Na N pegn([0,1]4) "

<a,+1/n —0. |

n—-+4oo

Notation 4: In the following, we note:

Qi(a,d) = Qi(a,d, 1) = [Vk € N*,| Qi(a,d, k)] fori=3,4 and
Pi(a,d) := [V(B,e) € E with (8,e) < (a,d), Qi(a,d)] fori=3,4,5.
Observe that for ¢ = 3,4,5, Pi(a,d) is the claim of Proposition ¢ for all pairs

(B,¢e) € E with (8,¢) < (a,d).
Now we show that Proposition 5 follows from Proposition 4:

Proof of Proposition 5 (P4(r,d) = P5(r,d + 1)). We only need to prove
PA(r,d) = Q5(r,d +1).

Let A C]0, 1[¢*! be a semi-algebraic set of dimension [ > 1.*> Under Proposi-
tion 1, it is enough to consider the two following special cases:

e A CJ0,1[%*! is a semi-algebraic set of the form:

{(z1,9) €]0,1[x A" : n(y) < z1 < ((y)},

where A’ CJ0,1[¢ is a Nash manifold of dimension [ — 1 and
n,¢ : A" —]0,1[ are Nash maps, such that deg(n), deg(¢), deg(A’)
depend only on deg(A) and d. By using a M-resolution of A’,
(¢5 210,171 =]0,1[%);=1,.. N, with M = M(d, deg(A)) and by consider-
ing no¢; and Co@;, we can assume that A’ =]0, 1['~!, with [ < d+1. So
we can apply Q4(r,1—1) to (¢, n); there exists (¢;)i=1,..~ a (C", 1, M')-
resolution of (¢,n) with M’ = M'(r,d,deg(A)). For each i, we define
;0 ]0,1[x]0,1['"1— A by

Yi(x,y) = (x(C o i —nodi)(y) +mn0 di(y), i(y)).

3 The case of dimension 0 is trivial.
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We control the degree of ¢; by applying Corollary 3. Then (¢;)i=1,... .~
is a (C",2)-resolution of A. We conclude the proof using Lemma 3.

e A is a semi-algebraic set of the form {({; x(v),y) : y € A’}. The dimen-
sion [ of A is strictly less than d+1. The decomposition into cells gives us
an M-resolution of A, (¢; :]0,1['— A);=1,.. N, with M = M(d, deg(A)).
We conclude the proof, by applying for each i, Q4(r,1) to the coordi-
nates of ¢;. ]

.....

Finally, we deduce Proposition 4 from Proposition 3. In fact, we prove:
P3(r +1,d) = P4(r,d).

Proof of Proposition 4 (P3(r + 1,d) = P4(r,d)). We argue by induction on d.
Assume that for e < d, we have P3(s+1,e) = P4(s,e) for all s € N. Let r € N.
Let us show P3(r + 1,d) = Q4(r,d).

Let f : A —]0,1[ be Nash map of degree < §, where A C]0,1[? is a semi-
algebraic open set. According to Q3(r + 1, d), there exists a (r + 1, M)-adapted
sequence (A )nen to f with M = M(r,d,d). Let (¢¥);<n, be a (C"T1 1, M)-
resolution of f/4,. Forall k € N, Ny < M. By extracting a subsequence, we can
assume Ny = N, for all k € N. According to the Ascoli theorem, B(r+1)(¢+DN
is a compact set in B(r)(@* )N where B(r) is the closed unit ball of the set
of C" maps on ]0,1[% onto R, endowed with the norm ||.||,. By extracting a
subsequence from the sequence (¢, f o ¢I')nen, We can assume that for each
i=1,...,N, (¢!")nen and (f o ¢?)pen converge on || .||, norm to (C",1) maps.
Let 1); be the limit of (¢} )nen. Observe that fo); = lim, fo¢] isalsoa (C", 1)
map.

By Corollary 7, the maps ¥; and f o, are semi-algebraic maps of degree
bounded by a function depending only on r, § and d. But a priori, these maps
are not Nash maps and they are onto [0, 1]¢. By applying Corollary 1, we note
that X; =]0, 1[4—+; 1(9]0,1]%) is a semi algebraic set of degree bounded only
by a function depending only on r, § and d.

Let us check that |J,_,
that A C |U,_,
all i, by convergence of ¢} to ¢;. Let z € A 0, 1[4, there exists a se-

.....

.....

quence x, € A, C]0,1[¢, such that z, — z. By extracting a subsequence,
we can assume that there exist 1 < i < N and a sequence (y, € [0,1]),en
such that x, = ggf(yn) By the uniform convergence of ¢' to 1;, we have
Yi(yn) — . We easily conclude that U,_, _y¢i([0,1]%) = adh(4). But
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[0,1]¢ — adh(X;) C ¥; 1 (9]0, 1]9); therefore A C |J,_,
A 0, 1% Finally, adh(A) = U,_; v ¥i(adh(X;)).

Apply Proposition 1 to the graph Ly, x, of 9;/x,. There exists a partition of
X; into Nash manifold (X7);—i, . p,, such that i)xi 18 a Nash map onto ]0, 1[¢.
Moreover P3(r+1,d) = P3(r+1,d—1) = P4(r,d—1) = P5(r,d). By applying
P5(r,d) to each Xz-j, and by composing the maps 1; with the (C", 1) Nash map
obtained from the (C",1) resolution of X;-j, we get a (C", K, M)-resolution of f,
with K = K(r,d) and M = M(r,deg(f),d). We conclude the proof by applying
Lemma 3. |

~ Vi(adh(X5)), because

.....

Finally, Yomdin-Gromov’s algebraic lemma follows from Proposition 5.

Proof of Yomdin-Gromov’s algebraic Lemma. Let A be a semi-algebraic com-
pact subset of [0,1]¢. We apply P5(a,d) to A F for each open hypercube F,
which takes part in the skeleton of [0,1]%. |

Now we only have to prove Proposition 3 for a single Nash map.

5. Case of dimension 1

First we study the case of dimension 1, where we can prove Proposition 4 right
away. The case of dimension 1 allows us to introduce simple ideas of parametri-
zations, which will be adapted in higher dimensions.

The semi-algebraic sets of ]0,1[ are the finite unions of open intervals and
points. So it is enough to prove Proposition 4 for A of the form ]a, b[C]0,1[. We
recall that a bounded Nash map defined on a open bounded interval I extends
continuously on adh(I) (See [7, Proposition 2.3.5]).

Proof of P4(1,1) (Case of the first derivative). Let f : ]Ja,b[—]0, 1] be a Nash
map. We cut the interval ]a,b[ into a minimal number N of subintervals
(Ji)k=1,....n, such that for each k, Vz € Jy, |f'(z)] > 1 or Vz € Jy, | f'(z)] < 1.
The integer N is bounded by a function of deg(f): apply Proposition 1 to
{z €]0,1] |f'(x)| < 1} and {x €]0,1] |f'(z)] > 1} and use Corollary 4.
On each interval Ji, we consider the following parametrization ¢ of adh(Jy) =
[e,d] C [0,1]:
o ¢(t) = c+t(d—c)if |f'| <1, and then we have deg(¢) = 1, deg(fod) =
deg(f).



308 DAVID BURGUET Isr. J. Math.

o 6(6) = fiky (F()+H(F(d)~ F(©) i |f'] > 1, and then we have deg(6) =
deg(f) (indeed deg(f~!) = deg(f)) and deg(fog)=1. 1

Proof of P4(r,1) (Case of higher derivatives). We argue by induction on r. As-
sume P4(r,1), with r > 1 and prove P4(r + 1,1).

Let f :]a,b[C]0,1[—]0, 1] be a Nash map. By considering for alli=1,..., N
the family (f o ¢;,¢;), where (¢;);=1,.n is a (C",1, M) resolution of f (with
M = M(r)) given by P4(r,1), we can assume that f is a (C", 1) Nash map.

We divide the interval ]a,b[ into a minimal number N of subintervals on
which |f("t1| is either increasing or decreasing, i.e., the sign of f(r+1 f(r+2)
is constant. Consider the case where |f("+1)| is decreasing, the increasing case
being similar. We reparametrize these intervals from [0, 1] with linear increasing
maps ®;. We define f; = fo®,. Obviously f; isa (C",1) Nash map and |fi(r+1)|
is decreasing. In the following computations, we note f instead of f;.

Setting h(x) = 22, we have:

(f o) (2) = 22)"H UV (@?) + R(w, f(2),..., [T (@)
where R is a polynomial depending only on r. Therefore,
(1) Va €]0, 1] |(f o n)" T ()] < |(22)" T UV (@) + C(r),

where C(r) is a function of r.
Furthermore, we have

(2)
z|f(r+1)(l,)| :/ |f(T+1)(z)|dt < ‘/ f(r+1)(t)dt‘ = |f(r)(gg) — f(r)(0)| <2.
0 0

Indeed, either f"+1)(z) = 0 and then the inequality is trivial or f("+1(x) # 0
and therefore the sign of f("+1) () is constant because |f("+1)| being decreasing,
we have for t €]0,z]: 0 < |fO D (z)| < |fC+D(t)]. By combining inequalities
(1) and (2), we obtain:

(22)7+!

[(f o) V(@) < ) +27—5— < Cr) + 2"

Finally deg(®; o h) = 2 and deg(f o h) = 2deg(f). We show now that N is
bounded by a function of deg(f) and r like in the first step of the proof: we
apply Proposition 1 to the semi-algebraic set {x €]0, 1[: f("+V () f"+2)(2) > 0}
and we use Corollary 4.

We conclude the proof of P4(r 4+ 1,1) by applying Lemma 3. ]
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6. Proof of Proposition 3

The proof of Proposition 3 is an induction both on the dimension d and on the
order of derivation a.

In the first step we increase the dimension d.

Then, fixing the dimension d, we increase the order of derivation « according
to the total order <. To be more explicit, let us introduce the following notation:

Notation 5: For a € N%, we set:

a@l::min{ﬁeNd:ajﬂ and o # (3}

We prove P3(a,d) = P3(a® 1,d). We will consider two cases: |a @ 1] =
la] + 1, ie., «=(0,...,0,s), for some s € N and |a ® 1| = |«|.

In fact, we prove in this section Yomdin-Gromov’s Lemma by induction. We
summarize in the following diagram the different dependences involved in the

T

P3(la®1|+1,d—1)

|

PA(ja®1],d—1)

|

P5(ja® 1], d)

/

P3(a @ 1,d)

induction:

P3(a,d)

Increase of the dimension: [Vr € N P3(r,d)] = P3((1,0,...,0),d+ 1)

Proof. Let f : A C]0,1[¢*1—]0,1[ a Nash map, defined on a semi-algebraic
open set A C R¥*!. We work on A, = {z € A : d(z,AS) > 1/n} in order to
ensure that f extends continuously on adh(A,,). The set A4, is a semi-algebraic
open set of degree bounded by a function of deg(A) and d (Corollary 1). For
simplicity, we note A instead of A,.
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We consider the following semi-algebraic open sets:
Ay ={x € A |0, f(z)] > 1} and A_ =int({z € A4, |0, f(x)| < 1}).

We have adh(4) = adh(A4;)Jadh(A_). Obviously adh(A;)(Jadh(A_) C
adh(A). Let us show A C adh(A;)Jadh(A-). Let y € A, if y ¢ adh(A4),
as A is open, there exists r > 0, such that the ball B(y,r) C ANAS C
{z € A, |0z, f(z)] < 1} and thus y € A_. Remark that deg(Ay),deg(A_)
are bounded by a function of deg(f) according to Corollary 1.

According to P3(2,d) = P4(1,d) = P5(1,d + 1), there exist (C!,1) extend-
able Nash triangular maps (¢;)1<j<n, such that adh(A_) = U, << n_ ;Z)\;-([O, 1]4)
and such that N_, deg(¢,) are bounded by a function of deg(A_), and thus by
a function of deg(f). We have |9, (f o ¢;)| < 1, so the maps ¢; can be used to
build a resolution of f.

For A, we consider the inverse of f. Observe first, that according
to Corollary 5, we can assume that A; is a slice of the following form
{(z1,y) €]0,1[x A4, : {(y) < z1 < n(y)}, where A, C]0,1[? is a semi-algebraic
open set of R? and ¢, 7 : A’ —]0,1[ are Nash maps.

Define Dy = {(f(z1,y),y) : (z1,y) € Ay}, We define g : Ay — Dy,
g(x1,9y1) = (f(21,9),y)). The map g is a local diffeomorphism, by the local
inversion theorem. Moreover, g is one to one, because g(x1,y) = g(z},v)
implies y = ¢/, and f(z1,y) = f(«),y) implies 1 = 2, because |0,, f(z)] > 1
for z € Ay. The map g extends to a homeomorphism g : adh(A+) — adh(Dy ),
since f is continuous on adh(A) (recall that we denote A := A,,).

Observe that D, is a semi-algebraic open set of R¥*'. On D, we define
¢: d(t,u) == g H(t,u) = (f(.,u)"(t),u). The Nash map ¢ : D, — A, is
triangular and deg(¢) = deg(f). Define ¢(t,u) = (z1,y). We compute:

1 _ __1l vy ’
Do(t,u) = < 6z1f(()flvy) 0uy T Iljif(xl Y) .

As (z1,y) € Ay, we have |0y, ¢(t,u)| = |m| < 1. Furthermore, we
check
fod(t,u) =t
Therefore, ¢ and f o ¢ are (C(1:%~0 1) extendable Nash triangular maps.
In order to obtain a resolution, we apply again P5(1,d + 1) to D4. That gives
(C*, 1) extendable Nash triangular maps ; : ]0,1[%"'— D, j < N, such
that N, deg(v;) are bounded by a function of deg(D_), thus by a function of
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deg(f) and such that adh(D) = U; ;< n, ¥i([0,1]%+1). Moreover, by applying
Fact 4, we get:

1021 (¢ 0 )| = 10, (9)].10a, (v])] < 1

because v; is triangular. We also have:

100, (f 0 0 ))| = |02,05] < 1,

where 1[1} is the first coordinate of ;. The parametrizations ¢ o; : 0, 1[*1—
10, 1[*+1 are therefore (C(1:%-0) 1) extendable Nash triangular maps, such that:
o adh(Ay) = UL dody([0, 1))
e cach fogo;isa (CH09 1) Nash map;
o deg(¢ o ©;), deg(f o ¢ o 9;) are bounded by a function of |a|,d, and
deg(f) according to Corollary 3.

Finally, {¢1,...,6n_,¢ 0 ¥1,...,¢ o ¥y, } is a (CHO+9) 1)resolution
of f. ]

Increase of the derivation order: P3(s,d) = P3((s+1,0,...,0),d).

Proof. Like in the case of dimension d = 1, we begin with the following reduc-
tion.

CLAIM 1: It is enough to show the result for a single (C®, 1) extendable Nash
map f: A =]0,1[—]0, 1[.

Proof of Claim 1. Assume that P3((s + 1,0,...,0),d) for a single (C®, 1) ex-
tendable a Nash map f : A =]0,1[¢—]0,1[. The proof of Lemma 5 implies
P3((s + 1,0,...,0),d) for any family (g; : ]0,1[?—=]0,1[)i=1,. & of (C*,1) ex-
tendable Nash maps. Let f : A C|0,1[?=]0,1[ a Nash map, defined on a
semi-algebraic open set A C]0,1['. By applying Q3(s,d) to f, we obtain a
(C*,1) resolution (¢7')i=1,...,n, of f/a,, with A,, an adapted sequence. We ap-
ply Q3((s+1,0,...,0),d) to the family (f o ¢, ¢7) of (C*,1) extendable Nash
maps defined on ]0,1[¢. We conclude by constructing a ((s + 1,0,...,0), M)-
adapted sequence for f with M = M(s,d,deg(f)), like in the proof of
Lemma 5. |

Let f:]0,1[*—]0, 1] be a (C*%,1) Nash map.
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We cut up 0, 1[% according to the sign of O 9" f like in the first step of

¥ 5 512
Oz Ox]

the proof:
as—i—lf 6s+2f
_ d

Ar = {2 €01 5t (@) () > 0

and
as—i—lf as+2f
=i d — 2 (g)—=(z) <
A_ =int ({Jc €]0, 1], oo (:U)agci_|r2 (x) < 0})

We have again adh(A) = adh(A4)Jadh(A_). In the following, we consider
only A = A, the case of A_ being similar. According to Corollary 5, we can as-
sume that A is a slice of the following form {(z1,y) €]0,1[x A’ {(y) <z1 <n(y)},
where A’ C]0,1[~! is a semi-algebraic open set and (,7n : A’ —]0,1[ are Nash
maps.

s+1

Applying estimate (2) obtained in Part 5 to the function z; +— %(ml,y)
L1
(we fix y), we get for (z1,y) € A4,
8s+1f 2
3 T T LY S T
& e R rT]

The induction hypothesis P3(s, d) implies P3(s+2,d—1) and P3((s+2,d—1)
implies P4(s+1,d—1). Apply P4(s+1,d—1) to ((,n): there exist (C*T1,d—1)
extendable Nash triangular maps h : )0, 1[¢71—]0, 1[2~1, of which the images of
the extensions cover adh(A’), such that ( o h and 5o h are (C**1,d — 1) Nash
maps. Define 1 : ]0,1[x]0,1[¢"1— A,

Y(vi,w) = (¢ o h(w).(1 = vf) + 10 h(w).vf, h(w)).

The maps ¢ are triangular, ||¢]|s+1 < 2 and the images of their continuous
extensions cover adh(A).
In the new coordinates (vy,ve,...,vq) =: (v1,w), we have:

z1 — ((y) = Coh(w).(1 —v?) +noh(w).v? —((h(w)) = v?.(noh(w) — ¢ oh(w))
and therefore the previous estimate (3) becomes:

aerlf 2
W ot VD S ) — Cohu
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Moreover, applying Fact 4, we get:

stl(f o s+1
P00 (1) =(200) 0 0 hw) — € 0 ) 2w, 0)
k
# B(y e ) = Coh(w) vr, (W0, w)ess).

where R is a polynomial, which depends only on s and d. Using the last

inequality (4), the first term is less than 2°72. Consider the second term.

The map f is a (C%,1) Nash map, therefore, |%| < 1, for k < s. Thus
1

|R(n o h(w) = ¢ o h(w), v, (ﬁ(w(vl,w)))kq)‘ is bounded by a function of s

axf
s+1 o . .
and d, and hence ‘%| also. We apply Lemma 1 to control the derivatives

of lower order than s of f o). Using Lemma 3, we can assume that 1 is a
(C**1,1) Nash map and f o is a (CCt10+0) 1) Nash map. [ |

We deal now with the last step of the proof.

Control of the following derivative: P3(a,d) = P3(a @ 1,d) with a #
(0,...,0,5)

Observe that the condition a # (0,...,0,s) implies |a| = |a @ 1|: the order
of the derivation is fixed.

Proof. Like in Claim 1, we can assume that f : ]0,1[?—]0,1[is a (C*,1) Nash
map.
Define A,, =|1/n,1 —1/n[?!. According to Tarski’s principle,

6&@1

B= {(xl,y) € adh(An) + | o (@1,9)| = v (‘%ﬁ;{(my)‘)}

is a semi-algebraic set of degree bounded by a function of deg(f) and s. By
the definition of an adapted sequence, the sup above is finite (recall that f is
not supposed to be analytic in a neighborhood of A, so that we cannot work
directly with A). According to Proposition 1, B is covered by sets (B;)i=1,... N,
Bi = {(21,y) €]0,1[xB} : 7i(y) < 21 < Ai(y)} or Bi = {(0i(y),y) € Bi} ,
where B} C]1/n,1—1/n[*"! are semi-algebraic sets of R~ such that | J |, B} =
11/n,1 —1/n["! and where o;,7;, A; : B/ —]0,1] are Nash maps. In the first
case, we set 0; := 1/2(A;+;). Afterwards, we consider only the sets B, which
are open sets. Observe that for these sets we have | Jadh(B!) = [1/n,1—1/n]¢"L.

By using the Tarski’s principle and Proposition 1, we check that N and the
degree of o; are bounded by a function of deg(f) and |a|. Define the Nash
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map ¢g; : B} —]0,1[, gi(y) = %%(m(y),y), where (a @ 1); denotes the
i-th coordinate of @ @ 1. The mlap gi is onto ]0,1[, because f is a (C%,1)
map and ((a @ 1)1,0,...,0) < a. The induction hypothesis P3(«,d) implies
P3(Ja|+1,d —1) and thus P4(|a|,d — 1), which applied to (a;, g;) gives (C*!,1)
extendable Nash triangular maps h; j : ]0,1[%"!— B!, such that g; o h; ; and
o5 0 hiy are (Clol 1) Nash and such that |, ki (0, 1]471) = adh(BY).
Then, h; j being triangular, we have according to Fact 4:

a((a@l)z,...,(aeal)d) (gz o hz k) 8u691f
8z((a@1)2 """ (a®1)q) y) = 6.1'(’“@1 (Ui o hi,k(y)a hz,k(y))
8}11‘7]@ (a®1), ahz’k (a®l),
(Tr) () R

where R is a polynomial, depending only on «, in the derivatives of f of order
=< « and in the derivatives of h; ; and o; o h; i, of order less than |a|. The map
hi is a (C'*!,1) Nash map and by hypothesis f is a (C*,1) Nash map, so that
we have |R| < C(|al,d), where C is a function * of |a| and d. After all g; o h;
is a (Cl*!,1) Nash map. Hence,

8&691

S 8hik)(a@1)2 (%)(aeﬁ)d

(050 hik(y), hi,k(y))(a—’ 0y

@@z, (a®)a) (g o h;
- } 81:((04@1)2 ..... (a@l)d

Y| 1 1R < C(lal.d)
Define ¢; ;. : ]0,1[?—]0, 1[¢ by:
¢i,k(z1; y) - (1/n + bna1, hi,k(y))v with b, :==1— 2/”

The parametrization ¢; 5, is a (C*®!,1) Nash triangular map:

adl °
o Using again the triangularity of h;; and Fact 4, we get: %

O (1 ntbur, hip(y)) X (b (@D (Gt ) (08D (k) (@D .,

where S is a polynomial in 5% w1th B = a and in the derivatives of h; i
of order less than |«f, S dependmg only on a. Threfore |S| < C(|a|,d).

4 In order to simplify the notations, we will denote by C' any function of || and d
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Moreover, by the definition of o;,

9> f Ohip\(@®Ds 1 Oh; o\ (a1,
6xa€Bl (1/7’L + bnxla hz,k(y)) X ( 8x2 ) . ( ag)d )
9ueLf Ohi g\ @@z Oy o (€@,
Dpadl (i 0 hik(y), hik(y)) x ( O ) .. ( e )
< C(lal,d),
thus
9*L(f o dik)
Oxoodl ‘
aa@lf 6hik (al), 6hik (a@l)d
= | ppasl (1/n+ bz, hik(y)) x ( 3 : ) ( az’d ) +19|
< C(lal,d)

e Finally for 6 < «, only the derivatives of f of order < « take part in

& oQ; . . .
the expression %, again because of the triangularity of h; ; and

Fact 4. Hence ‘%‘ < C(|a,d).

Lemma 3 gives us a (C%, 1, M )-resolution of f,4 , with

M = M(|a|,d, deg(f)). |
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