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• φi is analytic on ]0, 1[l;
• ‖φi‖r := maxβ:|β|≤r ‖∂

βφi/]0,1[l‖∞ ≤ 1;
•
⋃N
i=0 φi([0, 1]l) = A.Moreover N and deg(φi) are bounded by a function of deg(A), d and r.In his Séminaire Bourbaki [12], M. Gromov gives many ideas but stops shortof a complete proof. In [15], [16], Y. Yomdin used a weaker version of theprevious theorem. In this initial form, the parametrizations omitted a subsetcovered with at most Clog(1/α) cubes of radius α, for arbitrarily small α > 0.This version was su�cient for the dynamical applications presented in [15], [16].By using polynomial Taylor's approximation, this theorem gives estimates ofthe local complexity of smooth maps. Yomdin used it to compare the topologicalentropy and the �homological size� for Cr maps. S. Newhouse [13] showed, usingPesin's theory, how this gives, for C∞ smooth maps, upper-semicontinuity of themetric entropy and therefore the existence of invariant measures with maximumentropy. J. Buzzi [6] observed that, in fact, Y. Yomdin's estimates give a moreuniform result called asymptotic h-expansiveness, which was shown byM. Boyle,D. Fiebig and U. Fiebig [3] to be equivalent to the existence of principal symbolicextensions for C∞ smooth maps. The dynamical consequences of the abovetheorem are still developing in the works of M. Boyle, T. Downarowicz, S.Newhouse and others [11], [4].The theorem is trivial for d = 1: the semi-algebraic subsets of [0, 1] are the�nite unions of subintervals of [0, 1]. We deal with the 2-dimensional case assuggested by M. Gromov. This simple and instructive case is the subject ofSection 5. We prove the general case by induction using the notion of (Cα,K)triangular maps introduced in Section 2. The induction steps are of three types:

• we consider a semi-algebraic map de�ned on a semi-algebraic set ofhigher dimension and we bind the �rst derivative in the �rst coordinate.
• �xing the dimension of the semi-algebraic set, we bind the derivativesof the next higher order with respect to the �rst coordinate.
• �xing the dimension of the semi-algebraic set and the order of deriva-tion, we bind the next partial derivative for a total order on N

d.As I was completing the submission of this paper, I learned that Pila andA. Wilkie had written a proof of the same theorem [14]. I am grateful toM. Coste for this reference.



Vol. 168, 2008 A PROOF OF YOMDIN-GROMOV'S LEMMA 2932. Technical toolsYomdin-Gromov's Lemma is proved by controlling the derivatives consecutively.This is possible by the notion of triangular maps, which already appears inY. Yomdin's works [16].2.1. Triangular maps.De�nition 1: A map ψ : ]0, 1[l→]0, 1[d is triangular if l ≤ d and if
ψ = (ψ1(x1, . . . , xl), . . . , ψd−l+1(x1, . . . , xl),

ψd−l+2(x2, . . . , xl), . . . , ψd−l+k(xk, . . . , xl), . . . , ψd(xl)),for a family of maps (ψi : ]0, 1[min(l,d+1−i)→]0, 1[)i=1,...,d.Fact 1: If ψ : ]0, 1[m→]0, 1[p and φ : ]0, 1[n→]0, 1[m are triangular, then so is
ψ ◦ φ : ]0, 1[n→]0, 1[p.2.2. (Cα,K) maps. First we introduce the order on N

d used for the inductionin the proof of Yomdin-Gromov's algebraic lemma.De�nition 2: N
d is endowed with the order �, de�ned as follows: for α =

(α1, . . . , αd), β = (β1, . . . , βd) ∈ N
d, α � β if (α = β) either (|α| :=

∑
i αi < |β|)or (|α| = |β| and αk ≤ βk, where k := max{l ≤ d : αl 6= βl}).In fact, we have α � β if and only if (|α|, αd, αd−1, . . . , α1) precedes

(|β|, βd, βd−1, . . . , β1) in the usual lexicographic order.De�nition 3: Let K ∈ R
+, α ∈ N

d − {0}. Let A ⊂]0, 1[d be an open set. Amap f : A → R
k is a (Cα, K) map, if f := (f1, . . . , fk) is a C|α| map and if

‖f‖α := maxβ�α,1≤i≤k ‖∂βfi‖∞ ≤ K.If α = (0, 0 . . . , 0, r) (i.e., all the partial derivatives of fof order up to rare bounded by K), we write (Cr,K) and ‖.‖r instead of (C(0,...,0,r),K) and
‖.‖(0,...,0,r).2.3. Composition of (Cα, 1) maps. The two following lemmas deal with thecomposition of (Cα, 1) maps.Lemma 1: For all d, r ∈ N

∗, there exists a real number K = K(d, r), such thatif ψ, φ : ]0, 1[d→]0, 1[d are two (Cr, 1) maps, then ψ ◦ φ is a (Cr,K) map.



294 DAVID BURGUET Isr. J. Math.Proof. It follows directly from the formula of Faa-di-bruno for the higher deriva-tives of a composition (See [1, p. 3]), which we recall for completeness: let
ψ, φ : ]0, 1[d→]0, 1[d be two Cr maps and let (h1, . . . , hr) ∈ (Rd)r, we have 2:
Dr(ψ ◦ φ)(x)(h1, . . . , hr) =

∑

1≤q≤r

∑

i1,...,iq

σq(i1, . . . , iq)

×Dqψ(φ(x))(Di1φ(x)(h1, . . . , hi1), . . . , D
iqφ(x)(hr−iq+1, . . . , hr)),where the second sum is over all nonzero integers i1, . . . , iq satisfying

q∑

k=1

ik = r.We shall need the following adaptation of Lemma 1 to triangular maps.Lemma 2: For all d, r ∈ N
∗, there exists a real K = K(r, d) such that if

ψ, φ : ]0, 1[d→]0, 1[d are two (Cα, 1) maps with |α| = r and if φ is a triangularmap, then ψ ◦ φ is a (Cα,K) map.We introduce some notation for the proof of Lemma 2. Let (ei)i=1,...,d be thecanonical basis of R
d. For i = 1, . . . , d, Vi ⊂ R

d is the vector space generatedby e1, . . . , ei.For α ∈ N
d with |α| = r, vα := (e1, . . . , e1︸ ︷︷ ︸

α1

, . . . , ed, . . . , ed︸ ︷︷ ︸
αd

) ∈ (Rd)r and
V α := V1 × · · · × V1︸ ︷︷ ︸

α1

× · · · × Vd × · · · × Vd︸ ︷︷ ︸
αd

⊂ (Rd)r. Observe that, for a Cr map
f : ]0, 1[d→]0, 1[d, we have ∂αf(x) = Drf(x)(vα).Fact 2: Let 1 ≤ k ≤ d be an integer. Let f := (f1, . . . , fd) : ]0, 1[d→]0, 1[d be a
C1 triangular map. Then for all x ∈]0, 1[d, ∂xk

f(x) ∈ Vk.Proof. Let l > k be an integer. The map f being triangular,
fl(x) = fl(xl, . . . , xd)and therefore we have ∂xk

fl = 0.Fact 3: Let f : ]0, 1[d→]0, 1[d be a Cr map. Let α ∈ N
d with |α| = r and

w ∈ V α. Then Drf(x)(w) =
∑

β�αwβ∂βf(x), where wβ is a polynomial inthe coordinates of w, of which the coe�cients depend only on r and d. If2 σq(i1, . . . , iq) =
∏

0≤k≤q−1

(r−1−
∑k

l=1 il

r−
∑k+1

l=1
il

)
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w := (v1, . . . , vd) ∈ (Rd)r , we have wα =

∏
i=1,...,d v

αi

i,i , where vi,i denotes the
ith coordinate of vi.Proof. For
w ∈ {e1} × · · · × {e1}︸ ︷︷ ︸

α1

× · · · × {e1, e2, . . . , ed} × · · · × {e1, e2, . . . , ed}︸ ︷︷ ︸
αd

⊂ Vα,it follows from the de�nition of the order �. We conclude the proof by multi-linearity.Lemma 2 is easily implied by the followingFact 4: Let α ∈ N
d with |α| = r. Let ψ, φ : ]0, 1[d→]0, 1[d be two Cr maps. Weassume also, that φ is a triangular map. Then

∂α(ψ ◦ φ)(x) = ∂αψ(φ(x))
∏

i=1,...,d

(∂xiφi(x))
αi +R(∂βψ, ∂γφ : β ≺ 1α, γ � α),where R is a polynomial depending only on r and d.Proof. Let (v1, . . . , vd) := vα. Using the formula of Faa-di-bruno, we only haveto consider the general term

Dqψ(φ(x))(Di1φ(x)(v1, . . . , vi1 ), . . . , D
iqφ(x)(vr−iq+1, . . . , vr))for some nonzero integers i1, . . . , iq satisfying ∑q

k=1 ik = r. We have only tostudy the two following cases (only derivatives of ψ and φ of order < r areinvolved in the other terms):
• q = 1 and i1 = r > 1: the corresponding term is

Dψ(φ(x))(Drφ(x)(v)) = Dψ(φ(x))(∂αφ(x)).Therefore, this term contains also only derivatives of ψ of order ≺ αand derivatives of φ of order � α.
• q = r and i1 = i2 = · · · = iq = 1: the corresponding term is

Dψ(φ(x))(∂x1φ, . . . , ∂x1︸ ︷︷ ︸
α1

φ, . . . , ∂xd
φ, . . . , ∂xd

φ︸ ︷︷ ︸
αd

).By Fact 2, (∂x1φ, . . . , ∂x1︸ ︷︷ ︸
α1

φ, . . . , ∂xd
φ, . . . , ∂xd

φ︸ ︷︷ ︸
αd

) ∈ V α. Then we applyFact 3 to get the desired result.1 Let α, β ∈ N
d, β ≺ α if and only if β � α and β 6= α.



296 DAVID BURGUET Isr. J. Math.3. Real semi-algebraic geometryIn this section we recall basic results concerning semi-algebraic sets. We borrowthem from [2], [7] and [9].3.1. Semi-algebraic sets and maps.De�nition 4: A ⊂ R
d is a semi-algebraic set if it can be written as a �niteunion of sets of the form

{x ∈ R
d : P1(x) > 0, . . . , Pr(x) > 0, Pr+1(x) = 0, . . . , Pr+s(x) = 0},where r, s ∈ N and P1, . . . , Pr+s ∈ R[X1, . . . , Xd] . Such a formula is called apresentation of A.The degree of a presentation is the sum of the total degrees of the polynomialsinvolved (with multiplicities). The degree deg(A) of a semi-algebraic set Ais the minimum degree of its presentations.Remark that the number of polynomials occurring in a presentation of asemi-algebraic set is bounded by the degree of this presentation.De�nition 5: f : A ⊂ R

d → R
n is a semi-algebraic map if the graph Γf :=

{(x, f(x)) : x ∈ A} ⊂ R
d × R

n of f is a semi-algebraic set. The degree deg(f)of a semi-algebraic map f is the degree of its graph Γf .De�nition 6: A Nash manifold is a real analytic submanifold of R
d, which isalso a semi-algebraic set.A Nash map is a map de�ned on a Nash manifold, which is both analyticand semi-algebraic.3.2. Tarski's Principle.Theorem 2 (Tarski's principle): Let A ⊂ R

d+1 be a semi-algebraic set and
π : R

d+1 → R
d the projection de�ned by π(x1, . . . , xd+1) = (x1, . . . , xd), then

π(A) is a semi-algebraic set and deg(π(A)) is bounded by a function of deg(A)and d.Proof. See [7, Theorem 2.2.1].Corollary 1: Any formula combining sign conditions on semi-algebraic func-tions by conjunction, disjunction, negation and universal and existential real



Vol. 168, 2008 A PROOF OF YOMDIN-GROMOV'S LEMMA 297quanti�ers de�nes a semi-algebraic set. Moreover the degree of this semi-algebraic set is bounded by a function of the degrees of the semi-algebraicfunctions involved in the formula.Proof. See [7, Proposition 2.2.4].Corollary 2: Let f : A ⊂ R
d → R

n be a semi-algebraic map, then A and
f(A) are semi-algebraic sets. Moreover, deg(A) and deg(f(A)) are bounded bya function of deg(f), d and n.Proof. Immediate.Corollary 3: If φ and ψ are two semi-algebraic maps, such that the compo-sition φ ◦ ψ is well-de�ned, then φ ◦ ψ is a semi-algebraic map. Moreover, itsdegree is bounded by a function of deg(φ) and deg(ψ).Proof. See [7, Proposition 2.2.6].Corollary 4: Let r ∈ N. Let A ⊂ R

d be a semi-algebraic open set and let
f : A → R

n be a Nash map. The partial derivatives of f of order r are alsosemi-algebraic maps of degree bounded by a function of deg(f), d, n and r.Proof. See [7, Proposition 2.9.1].3.3. Continuous structure of semi-algebraic sets. We recall now clas-sical results concerning the structure of semi-algebraic sets. The �rst resultsdeal with strati�cation and the last ones with decomposition into cells.Proposition 1: For any semi-algebraic subset A ⊂]0, 1[d+1 , there exist inte-gersm, q1, . . . , qm, disjoint Nash manifolds A1, . . . , Am ⊂]0, 1[d and Nash maps,
ζi,1 < · · · < ζi,qi : Ai →]0, 1[, for all 1 ≤ i ≤ m, such that:

• A coincides with a union of slices of the following two forms {(x1, y) ∈

]0, 1[×Ai : ζi,k(y) < x1 < ζi,k+1(y)} and {(ζi,k(y), y) : y ∈ Ai};
• the integers m, qi, deg(Ai), deg(ζi,j) are bounded by a function of
deg(A) and d.Proof. This is Theorem 2.2.1 in [2] except that there the maps ζi,k are onlyclaimed to be continuous. Using Thom's Lemma, we can assume, that ζi,k areNash maps, as noticed in Remark 1 of [9].



298 DAVID BURGUET Isr. J. Math.We let adh(H), int(H) and ∂H denote the closure, the interior and the bound-ary, respectively, of the set H ⊂ R
d for the usual topology.For open semi-algebraic sets, we have the following result.Corollary 5: For any semi-algebraic open subset A ⊂]0, 1[d+1, there existintegers m, q1, . . . , qm, disjoint semi-algebraic open sets A1, . . . , Am ⊂]0, 1[dand Nash maps, ζi,1 < · · · < ζi,qi : Ai →]0, 1[, for all 1 ≤ i ≤ m, such that:

• adh(A) coincides with a union of slices of the following form
adh({(x1, y) ∈]0, 1[×Ai : ζi,k(y) < x1 < ζi,k+1(y)});

• the integers m, qi, deg(Ai), deg(ζi,j) are bounded by a function of
deg(A) and d.Proof. Let A ⊂]0, 1[d+1 be a semi-algebraic open set. We apply Proposition 1to A, and keep only the slices of the form

{(x1, y) ∈]0, 1[×Ai : ζi,k(y) < x1 < ζi,k+1(y)},where Ai is an open set. Let us check that the closure of these slices is adh(A).Let x ∈ A and let U ⊂ A be an open neighborhood of x. If the dimen-sion of Ai is strictly less than d, then the slices {(ζi,k(y), y) : y ∈ Ai} and
{(x1, y) ∈]0, 1[×Ai : ζi,k(y) < x1 < ζi,k+1(y)} have empty interior. Thereforethe open set U ⊂ A cannot intersect only such slices. We conclude that x ∈⋃

{i : Aiis open} adh({(x1, y) ∈]0, 1[×Ai : ζi,k(y) < x1 < ζi,k+1(y)}), and then
A ⊂

⋃
{i : Aiis open} adh({(x1, y) ∈]0, 1[×Ai : ζi,k(y) < x1 < ζi,k+1(y)}).Proposition 2: Let A ⊂ R

n be a semi-algebraic set. There exist an integer Nbounded by a function of deg(A) and connected Nash manifolds A1, . . . , AN suchthat A =
∐N
i=1Ai and ∀i 6= j (Ai

⋂
adh(Aj) 6= ∅) ⇒ (Ai ⊂ adh(Aj) et dim(Ai)

< dim(Aj)). (∐ : disjoint union).Proof. See [9, Proposition 3.5, p. 124].De�nition 7: In the notation of the previous proposition, the dimension of Ais the maximum of the dimensions of the Nash manifolds A1, . . . , AN .In the following corollary, we reparametrize a semi-algebraic set with Nashmaps of bounded degree. The point of Yomdin-Gromov's algebraic lemma is



Vol. 168, 2008 A PROOF OF YOMDIN-GROMOV'S LEMMA 299that one can bound the di�erentiable size of the reparametrizations. The corol-lary 6 is a stronger form of Theorem 2.3.6 in [7], so we produce a detailedproof.De�nition 8: Let A ⊂]0, 1[d be a semi-algebraic set of dimension l. A family ofmaps (φi : ]0, 1[l→ A)i=1,...,N is a resolution of A if:
• each φi is triangular;
• each φi is a Nash map;
• A =

⋃N
i=1 φi(]0, 1[l) 2.Let M ∈ N. A M-resolution of A is a resolution of A, (φi)i=1,...,N , suchthat:

• N ≤M ;
• deg(φi) ≤M .Any semi-algebraic set A ⊂]0, 1[d admits a resolution, (φi)i=1,...,N , with Nand deg(φi) bounded by a function of deg(A) and d. In a formal way:Corollary 6: Given integers d, δ, there exists an integer M = M(d, δ), suchthat any semi-algebraic set A ⊂]0, 1[d of degree ≤ δ admits a M -resolution.Proof. We argue by induction on d. We denote P (d) the claim of the abovecorollary for semi-algebraic subsets of ]0, 1[d. P (0) is trivial. Assume P (d).Let A ⊂]0, 1[d+1 be a semi-algebraic set of dimension l. Proposition 1 givesus integersm, q1, . . . , qm, disjoint Nash manifolds A1, . . . , Am ⊂]0, 1[d and Nashmaps, ζi,1 < · · · < ζi,qi : Ai →]0, 1[ such that:
• A coincides with a union of slices of the two following forms {(x1, y) ∈

]0, 1[×Ai : ζi,k(y) < x1 < ζi,k+1(y)} and {(ζi,k(y), y) : y ∈ Ai} ;
• m, qi, deg(Ai), deg(ζi,j) are bounded by a function of deg(A) and d.We note li the dimension of Ai; we have: li ≤ l. Apply the induction hy-pothesis to Ai ⊂]0, 1[d. There exists a resolution of Ai, i.e., an integer Ni andNash maps φi,1, . . . , φi,Ni : ]0, 1[li→ Ai, such that Ai =

⋃Ni

p=1 φi,p(]0, 1[li) and
Ni, deg(φi) are bounded by a function of deg(Ai) and d, therefore by a functionof deg(A) and d.First, we consider a slice of the form

{(x1, y) ∈]0, 1[×Ai : ζi,k(y) < x1 < ζi,k+1(y)}2 by convention ]0, 1[0= {0}.



300 DAVID BURGUET Isr. J. Math.Observe that the dimension li of the Nash manifold Ai is, in this case, strictlyless than l. Then, we de�ne ψi,k,p : ]0, 1[l→ A as follows: ψi,k,p(x1, x2, . . . , xl) :=

(x1(ζi,k+1−ζi,k)◦φi,p(x2, . . . , xli+1)+ζi,k ◦φi,p(x2, . . . , xli+1), φi,p), for 1 ≤ p ≤

Ni.Consider now a slice of the form {(ζi,k(y), y) : y ∈ Ai}. We de�ne
ψi,k,p : ]0, 1[l→]0, 1[d+1as follows: ψi,k,p(x1, . . . , xl) := (ζi,k ◦ φi,p(x1, . . . , xli), φi,p(x1, . . . , xli)), for

1 ≤ p ≤ Ni.The family of maps F := (ψi,k,p)i,k,p is a M -resolution, with M dependingonly on d and deg(A):
• each ψi,k,p is a Nash triangular map;
• A =

⋃
i,k,p ψi,k,p(]0, 1[l);

• the cardinal of F is bounded by 3
∑m
i=1 qiNi;

• each deg(ψi,k,p) is bounded by a function of deg(A) and d, according toCorollary 3.A limit of semi-algebraic maps of bounded degree is again a semi-algebraicmap.Corollary 7: Let (fn : ]0, 1[d→]0, 1[k)n∈N be a sequence of continuous semi-algebraic maps of degree ≤ δ, such that (fn)n∈N converges uniformly to
f : ]0, 1[d→ [0, 1]k. Then f is a continuous semi-algebraic map of degreebounded by a function of d, k and δ.Proof. It is enough to prove the corollary for k = 1.Let (fn : ]0, 1[d→]0, 1[)n∈N be a sequence of semi-algebraic maps of degree
≤ δ. For all n ∈ N, there exists Pn ∈ R[X1, . . . , Xd+1]−{0} of degree ≤ δ, suchthat Pn(x1, . . . , xd, 1/4+fn(x1, . . . , xd)/2) = 0, ∀x := (x1, . . . , xd) ∈]0, 1[d. Theset R[X1, . . . , Xd+1] of polynomials in d+1 variables is endowed with the norm:
‖P‖ := supα∈Nd+1 |aα|, for P :=

∑
α∈Nd+1 aαX

α. By dividing Pn by ‖Pn‖, wecan choose ‖Pn‖ = 1. Then, by extracting a subsequence, we can assume that
Pn → P 6= 0, with deg(P ) ≤ δ. It is easy to check that P (x, 1/4 + f(x)/2) = 0.By applying Proposition 1 to {P = 0}

⋂
]0, 1[d+1 (we consider 1/4+fn/2 insteadof fn, because f(x) might be on the boundary of [0, 1]d) and by continuity of f ,we conclude there exists a partition of ]0, 1[d into Nash manifolds (Ai)i=1,...,Nand Nash maps ζi : Ai →]0, 1[ with N and deg(ζi) bounded by a function of δ
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⋃
i=1,...,N Γζi . In particular, f is a semi-algebraicmap o f degree bounded by a function of δ and d.3.4. Cα-resolution of semi-algebraic sets and Nash maps. In this sec-tion, we de�ne notions to estimate the di�erentiable size of semi-algebraic setsand maps.De�nition 9: A Nash map f : A ⊂ R

d → R
n is extendable if f extends contin-uously on adh(A).Notation 1: Let f : A ⊂ R

d → R
n be a extendable Nash map. We denote by f̃the unique continuous extension of f .Remark 1: This extension is unique by continuity of f . By using Corollary 1,observe that f̃ is a semi-algebraic map and that deg(f̃) is bounded by a functionof deg(f).De�nition 10: Let K ∈ R

+. Let A ⊂]0, 1[d be a semi-algebraic set of dimension
l. Let α ∈ N

l − {0}. The family of maps (φi : ]0, 1[l→ A)i=1,...,N is a (Cα,K)-resolution of A if:
• each φi is triangular;
• each φi is a (Cα,K) extendable Nash map;
• adh(A) =

⋃N
i=1 φ̃i([0, 1]l).Let M ∈ N. A (Cα,K,M)-resolution of A is a (Cα,K)-resolution of A,

(φi)i=1,...,N , such that:
• N ≤M ;
• deg(φi) ≤M .De�nition 11: Let K ∈ R

+. Let f1, . . . , fk : A →]0, 1[ be semi-algebraic maps,where A ⊂]0, 1[d is a semi-algebraic set of dimension l. Let α ∈ N
l − {0}. Thefamily of maps (φi : ]0, 1[l→ A)i=1,...,N is a (Cα,K)-resolution of (fj)j=1,...,kif:

• each φi is triangular;
• each φi and each fj ◦ φi is a (Cα,K) extendable Nash map;
• adh(A) =

⋃N
i=1 φ̃i([0, 1

l]).Let M ∈ N. A (Cα,K,M)-resolution of (fj)j=1,...,k, (φi)i=1,...,N , is a
(Cα,K)-resolution of (fj)j=1,...,k such that:

• N ≤M ;
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• deg(φi) ≤M and deg(fj ◦ φi) ≤M .If α = (0, 0, . . . , 0, r), we write (Cr,K), (Cr,K,M) instead of (C(0,...,0,r),K),

(C(0,...,0,r),K,M).Remark 2: A Cα-resolution of a semi-algebraic set A is in a obvious way a
Cα-resolution of the characteristic function of A.To prove Yomdin-Gromov's algebraic lemma, we take limits of parametriza-tions of a semi-algebraic set close to A, so that these limits reparametrize
adh(A). That is why in the de�nition of a Cα-resolution above we reparametrize
adh(A), contrary to De�nition 8 of a resolution.The following remark is very useful later on:Lemma 3: Given an integer d and a real number N , there is an integer
M = M(N, d), such that for any α ∈ N

d − {0} and for any (Cα, N) Nashmap f : ]0, 1[d→]0, 1[, there exists a (Cα, 1,M)-resolution of f .Proof. We use homothetic reparametrizations of ]0, 1[d. The details are left tothe reader.3.5. (α,M)-adapted sequence. We will use the following notion to proveYomdin-Gromov's algebraic lemma:De�nition 12: Let α ∈ N
d − {0} and M ∈ N. Let (fi : A →]0, 1[)i=1,...,k be afamily of Nash maps de�ned on a semi-algebraic open set A ⊂]0, 1[d. A sequence

(α,M)-adapted to (fi)i=1,...,k is a sequence (An)n∈N of semi-algebraic sets, suchthat:
• An ⊂ A for each n ∈ N;
• an := supx∈A d(x,An) −−−−−→

n→+∞
0, where d(x,An) is the distance be-tween x and An;

• deg(An) ≤M ;
• (fi/An

)i=1,...,k admits a (Cα, 1,M)-resolution.If α = (0, 0 . . . , r), we write (r,M) instead of ((0, . . . , 0, r),M).4. StatementsGiven a family of semi-algebraic functions, we shall �rst reparametrize themaway from their singularities. Then we prove the main theorem.



Vol. 168, 2008 A PROOF OF YOMDIN-GROMOV'S LEMMA 303Proposition 3: For any family (fi : A→]0, 1[)i=1,...,k of Nash maps de�ned ona semi-algebraic open set A ⊂]0, 1[d, there exists a (r,M)-adapted to (fi)i=1,...,k,with M depending only on d, r and maxi(deg(fi)).The next proposition follows from the above:Proposition 4: For any family (fi : A →]0, 1[)i=1,...,k of Nash maps de-�ned on a semi-algebraic open set A ⊂]0, 1[d, there is a (Cr, 1,M)-resolutionof (fi)i=1,...,k, with M depending only on d, r and maxi(deg(fi)).We deduce the following proposition from Propositions 1 and 4:Proposition 5: For any semi-algebraic set A ⊂]0, 1[d, there exists a (Cr, 1,M)resolution of A, with M depending only on d, r and deg(A).Now we show how Propositions 3, 4 and 5 and Yomdin-Gromov's algebraiclemma follow from the case k = 1 of Proposition 3. In fact, we show strongerresults, which are used in the induction in the last section.Notation 2: Let E =
⋃
d≥1(N

d − {0}) × {d} together with the order: (β, e) �

(α, d) if (e < d) or (e = d and β � α)We write (r, d) instead of ((0, . . . , 0, r), d) ∈ E.The order � coincides with the lexicographic order of (d, |α|, αd, . . . , α1).Notation 3: Fix (α, d) ∈ E and k ∈ N. We will write Q3(α, d, k), Q4(α, d, k),
Q5(α, d, k) for the following claims:
Q3(α, d, k): for any family (fi : A →]0, 1[)i=1,...,k of Nash maps de�ned ona semi-algebraic open set A ⊂]0, 1[d, there exists a sequence (α,M)-adapted to

(fi)i=1,...,k, with M ∈ N depending only on maxi(deg(fi)).
Q4(α, d, k): for any family (fi : A →]0, 1[)i=1,...,k of Nash maps de�nedon a semi-algebraic open set A ⊂]0, 1[d, there exists a (Cr, 1,M)-resolution of

(fi)i=1,...,k, with M ∈ N depending only on maxi(deg(fi)).
Q5(α, d): for any semi-algebraic set A ⊂]0, 1[d, there exists a (Cr, 1,M) res-olution of A, with M ∈ N depending only on deg(A).In the statements of Propositions 3 and 4, we only need to reparametrize asingle Nash map:Lemma 4: The claim Q4(α, d, 1) implies the claim Q4(α, d, k) for all k ∈ N

∗.



304 DAVID BURGUET Isr. J. Math.Proof. We argue by induction on k. Assume Q4(α, d, l), for l ≤ k: for any
l-families g1, . . . , gl : B →]0, 1[ of Nash maps of degree ≤ δ, with B ⊂]0, 1[da semi-algebraic open set, there is a (Cα, 1,M)-resolution of g1, . . . , gl, with
M = M(l, δ).Let f1, . . . , fk+1 : A →]0, 1[ be Nash maps of degree ≤ δ, with A ⊂]0, 1[d asemi-algebraic open set. In the following, for each l ≤ k, we denote Ml =

M(l, δ). According to the induction hypothesis, there exists (φi)i=1,...,N a
(Cα, 1,Mk)-resolution of (f1, . . . , fk). By Q4(α, d) for k = 1, for each i, wecan �nd (ψi,j)j=1,...,Ni a (Cα, 1,M1)-resolution of fk+1 ◦ φi.According to Lemma 2, the maps φi ◦ψi,j , of which the number is∑N

i=1Ni ≤

M1Mk, are (Cα,K) extendable Nash maps, with some K = K(|α|, d). Thesame holds for the maps fp ◦ φi ◦ ψi,j for all 1 ≤ p ≤ k. We control the degreeof these Nash maps by applying Corollary 3. For each i, (ψi,j)j=1,...,Ni being a
(Cα, 1)-resolution of fk+1 ◦ φi, the maps fk+1 ◦ φi ◦ ψi,j are (Cα, 1) extendableNash maps. Moreover, we have in a trivial way: adh(A) =

⋃
i,j φ̃i ◦ ψ̃i,j([0, 1]d).We conclude the proof of Q4(α, d, k + 1) by applying Lemma 3.Lemma 5: The claim Q3(α, d, 1) implies the claim Q3(α, d, k) for all k ∈ N

∗.Proof. We adapt the above proof for Q3(α, d) as follows (we use the samenotation). Let (An)n∈N be a sequence α-adapted to (fi)i=1,...,k. Hence, for all
n ∈ N, there exists (φnj )j=1,...,Nn a (Cα, 1) resolution of (fi/An

)i=1,...,k. For n,
j, let (An,jp )p∈N be a sequence α-adapted to fk+1 ◦ φnj .We use the following remark, which is an easy consequence of the uniformcontinuity:Remark 3: If (An)n∈N is a sequence of subsets of [0, 1]l satisfying

sup
x∈[0,1]l

d(x,An) −−−−−→
n→+∞

0and φ : [0, 1]l → [0, 1]d is a continuous map, then
sup

x∈φ([0,1]l)

d(x, φ(An)) −−−−−→
n→+∞

0.According to the above remark for φnj , we can choose an integer pj,n for each
n ∈ N and each 1 ≤ j ≤ Nn, such that supx∈φn

j ([0,1]d) d(x, φ
n
j (An,jpj,n

)) < 1/n.Now, let us show that Bn :=
⋃Nn

j=1 φ
n
j (An,jpj,n

) de�nes a sequence α-adapted to
(fi)i=1,...,k+1.



Vol. 168, 2008 A PROOF OF YOMDIN-GROMOV'S LEMMA 305Observe that Bn is a semi-algebraic set because each φnj is a semi-alge-braic map and each An,jp is a semi-algebraic set. Moreover, Nn, deg(φnj ) and
deg(An,jpj,n

) and therefore deg(Bn) are bounded by a function of maxi(deg(fi)),
|α| and d. Finally, we have:

sup
x∈A

d(x,Bn) ≤ sup
x∈A

d(x,An) + max
j=1,...,Nn

(
sup

x∈φn
j ([0,1]d)

d(x, φnj (An,jpj,n
))
)

≤ an + 1/n −−−−−→
n→+∞

0.Notation 4: In the following, we note:
Qi(α, d) := Qi(α, d, 1) = [∀k ∈ N

∗, Qi(α, d, k)] for i = 3, 4 and
Pi(α, d) := [∀(β, e) ∈ E with (β, e) � (α, d), Qi(α, d)] for i = 3, 4, 5.Observe that for i = 3, 4, 5, Pi(α, d) is the claim of Proposition i for all pairs

(β, e) ∈ E with (β, e) � (α, d).Now we show that Proposition 5 follows from Proposition 4:Proof of Proposition 5 (P4(r, d) ⇒ P5(r, d+ 1)). We only need to prove
P4(r, d) ⇒ Q5(r, d+ 1).Let A ⊂]0, 1[d+1 be a semi-algebraic set of dimension l ≥ 1.3 Under Proposi-tion 1, it is enough to consider the two following special cases:

• A ⊂]0, 1[d+1 is a semi-algebraic set of the form:
{(x1, y) ∈]0, 1[×A′ : η(y) < x1 < ζ(y)},where A′ ⊂]0, 1[d is a Nash manifold of dimension l − 1 and

η, ζ : A′ →]0, 1[ are Nash maps, such that deg(η), deg(ζ), deg(A′)depend only on deg(A) and d. By using a M -resolution of A′,
(φi : ]0, 1[l−1→]0, 1[d)i=1,...,N , withM = M(d, deg(A)) and by consider-ing η◦φi and ζ ◦φi, we can assume that A′ =]0, 1[l−1, with l ≤ d+1. Sowe can apply Q4(r, l−1) to (ζ, η); there exists (φi)i=1,...,N a (Cr, 1,M ′)-resolution of (ζ, η) with M ′ = M ′(r, d, deg(A)). For each i, we de�ne
ψi : ]0, 1[×]0, 1[l−1→ A by

ψi(x, y) = (x(ζ ◦ φi − η ◦ φi)(y) + η ◦ φi(y), φi(y)).3 The case of dimension 0 is trivial.



306 DAVID BURGUET Isr. J. Math.We control the degree of ψi by applying Corollary 3. Then (ψi)i=1,...,Nis a (Cr, 2)-resolution of A. We conclude the proof using Lemma 3.
• A is a semi-algebraic set of the form {(ζi,k(y), y) : y ∈ A′}. The dimen-sion l of A is strictly less than d+1. The decomposition into cells gives usanM -resolution of A, (φi : ]0, 1[l→ A)i=1,...,N , withM = M(d, deg(A)).We conclude the proof, by applying for each i, Q4(r, l) to the coordi-nates of φi.Finally, we deduce Proposition 4 from Proposition 3. In fact, we prove:

P3(r + 1, d) ⇒ P4(r, d).Proof of Proposition 4 (P3(r + 1, d) ⇒ P4(r, d)). We argue by induction on d.Assume that for e < d, we have P3(s+1, e) ⇒ P4(s, e) for all s ∈ N. Let r ∈ N.Let us show P3(r + 1, d) ⇒ Q4(r, d).Let f : A →]0, 1[ be Nash map of degree ≤ δ, where A ⊂]0, 1[d is a semi-algebraic open set. According to Q3(r+ 1, d), there exists a (r+ 1,M)-adaptedsequence (An)n∈N to f with M = M(r, d, δ). Let (φki )i≤Nk
be a (Cr+1, 1,M)-resolution of f/Ak

. For all k ∈ N, Nk ≤M . By extracting a subsequence, we canassume Nk = N , for all k ∈ N. According to the Ascoli theorem, B(r+1)(d+1)Nis a compact set in B(r)(d+1)N , where B(r) is the closed unit ball of the setof Cr maps on ]0, 1[d onto R, endowed with the norm ‖.‖r. By extracting asubsequence from the sequence (φni , f ◦ φni )n∈N, we can assume that for each
i = 1, . . . , N , (φni )n∈N and (f ◦ φni )n∈N converge on ‖ .‖r norm to (Cr, 1) maps.Let ψi be the limit of (φni )n∈N. Observe that f ◦ψi = limn f ◦φ

n
i is also a (Cr, 1)map.By Corollary 7, the maps ψi and f ◦ ψi are semi-algebraic maps of degreebounded by a function depending only on r, δ and d. But a priori, these mapsare not Nash maps and they are onto [0, 1]d. By applying Corollary 1, we notethat Xi =]0, 1[d−ψ−1

i (∂[0, 1]d) is a semi algebraic set of degree bounded onlyby a function depending only on r, δ and d.Let us check that ⋃i=1,...,N ψi(adh(Xi)) = adh(A). It is enough to showthat A ⊂
⋃
i=1,...,N ψi(adh(Xi)), because we have ψi(adh(Xi)) ⊂ adh(A), forall i, by convergence of φni to ψi. Let x ∈ A ⊂]0, 1[d, there exists a se-quence xn ∈ An ⊂]0, 1[d, such that xn → x. By extracting a subsequence,we can assume that there exist 1 ≤ i ≤ N and a sequence (yn ∈ [0, 1]d)n∈Nsuch that xn = φ̃ni (yn). By the uniform convergence of φni to ψi, we have

ψi(yn) → x. We easily conclude that ⋃i=1,...,N ψi([0, 1]d) = adh(A). But
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[0, 1]d − adh(Xi) ⊂ ψ−1

i (∂[0, 1]d); therefore A ⊂
⋃
i=1,...,N ψi(adh(Xi)), because

A ⊂]0, 1[d. Finally, adh(A) =
⋃
i=1,...,N ψi(adh(Xi)).Apply Proposition 1 to the graph Γψi/Xi

of ψi/Xi
. There exists a partition of

Xi into Nash manifold (Xj
i )j=1,...,Pi , such that ψi/Xj

i
is a Nash map onto ]0, 1[d.Moreover P3(r+1, d) ⇒ P3(r+1, d−1) ⇒ P4(r, d−1) ⇒ P5(r, d). By applying

P5(r, d) to each Xj
i , and by composing the maps ψi with the (Cr, 1) Nash mapobtained from the (Cr, 1) resolution of Xj

i , we get a (Cr,K,M)-resolution of f ,with K = K(r, d) andM = M(r, deg(f), d). We conclude the proof by applyingLemma 3.Finally, Yomdin-Gromov's algebraic lemma follows from Proposition 5.Proof of Yomdin-Gromov's algebraic Lemma. Let A be a semi-algebraic com-pact subset of [0, 1]d. We apply P5(α, d) to A⋂F for each open hypercube F ,which takes part in the skeleton of [0, 1]d.Now we only have to prove Proposition 3 for a single Nash map.5. Case of dimension 1First we study the case of dimension 1, where we can prove Proposition 4 rightaway. The case of dimension 1 allows us to introduce simple ideas of parametri-zations, which will be adapted in higher dimensions.The semi-algebraic sets of ]0, 1[ are the �nite unions of open intervals andpoints. So it is enough to prove Proposition 4 for A of the form ]a, b[⊂]0, 1[. Werecall that a bounded Nash map de�ned on a open bounded interval I extendscontinuously on adh(I) (See [7, Proposition 2.3.5]).Proof of P4(1, 1) (Case of the �rst derivative). Let f : ]a, b[→]0, 1[ be a Nashmap. We cut the interval ]a, b[ into a minimal number N of subintervals(Jk)k=1,...,N , such that for each k, ∀x ∈ Jk, |f ′(x)| ≥ 1 or ∀x ∈ Jk, |f ′(x)| ≤ 1.The integer N is bounded by a function of deg(f): apply Proposition 1 to
{x ∈]0, 1[ |f ′(x)| ≤ 1} and {x ∈]0, 1[ |f ′(x)| ≥ 1} and use Corollary 4.On each interval Jk, we consider the following parametrization φ of adh(Jk) =

[c, d] ⊂ [0, 1]:
• φ(t) = c+ t(d−c) if |f ′| ≤ 1, and then we have deg(φ) = 1, deg(f ◦φ) =

deg(f).
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• φ(t) = f−1

|[c,d](f(c)+t(f(d)−f(c))) if |f ′| ≥ 1, and then we have deg(φ) =

deg(f) (indeed deg(f−1) = deg(f)) and deg(f ◦ φ) = 1.Proof of P4(r, 1) (Case of higher derivatives). We argue by induction on r. As-sume P4(r, 1), with r ≥ 1 and prove P4(r + 1, 1).Let f : ]a, b[⊂]0, 1[→]0, 1[ be a Nash map. By considering for all i = 1, . . . , Nthe family (f ◦ φi, φi), where (φi)i=1,...N is a (Cr, 1,M) resolution of f (with
M = M(r)) given by P4(r, 1), we can assume that f is a (Cr, 1) Nash map.We divide the interval ]a, b[ into a minimal number N of subintervals onwhich |f (r+1)| is either increasing or decreasing, i.e., the sign of f (r+1)f (r+2)is constant. Consider the case where |f (r+1)| is decreasing, the increasing casebeing similar. We reparametrize these intervals from [0, 1] with linear increasingmaps Φi. We de�ne fi = f ◦Φi. Obviously fi is a (Cr, 1) Nash map and |f

(r+1)
i |is decreasing. In the following computations, we note f instead of fi.Setting h(x) = x2, we have:

(f ◦ h)(r+1)(x) = (2x)r+1f (r+1)(x2) +R(x, f(x), . . . , f (r)(x))where R is a polynomial depending only on r. Therefore,(1) ∀x ∈]0, 1[ |(f ◦ h)(r+1)(x)| ≤ |(2x)r+1f (r+1)(x2)| + C(r),where C(r) is a function of r.Furthermore, we have(2)
x|f (r+1)(x)| =

∫ x

0

|f (r+1)(x)|dt ≤

∣∣∣∣
∫ x

0

f (r+1)(t)dt

∣∣∣∣ = |f (r)(x) − f (r)(0)| ≤ 2.Indeed, either f (r+1)(x) = 0 and then the inequality is trivial or f (r+1)(x) 6= 0and therefore the sign of f (r+1)(t) is constant because |f (r+1)| being decreasing,we have for t ∈]0, x]: 0 < |f (r+1)(x)| ≤ |f (r+1)(t)|. By combining inequalities(1) and (2), we obtain:
|(f ◦ h)(r+1)(x)| ≤ C(r) + 2

(2x)r+1

x2
≤ C(r) + 2r+2Finally deg(Φi ◦ h) = 2 and deg(f ◦ h) = 2deg(f). We show now that N isbounded by a function of deg(f) and r like in the �rst step of the proof: weapply Proposition 1 to the semi-algebraic set {x ∈]0, 1[: f (r+1)(x)f (r+2)(x) ≥ 0}and we use Corollary 4.We conclude the proof of P4(r + 1, 1) by applying Lemma 3.



Vol. 168, 2008 A PROOF OF YOMDIN-GROMOV'S LEMMA 3096. Proof of Proposition 3The proof of Proposition 3 is an induction both on the dimension d and on theorder of derivation α.In the �rst step we increase the dimension d.Then, �xing the dimension d, we increase the order of derivation α accordingto the total order�. To be more explicit, let us introduce the following notation:Notation 5: For α ∈ N
d, we set:

α⊕ 1 := min{β ∈ N
d : α � β and α 6= β}We prove P3(α, d) ⇒ P3(α ⊕ 1, d). We will consider two cases: |α ⊕ 1| =

|α| + 1, i.e., α = (0, . . . , 0, s), for some s ∈ N and |α⊕ 1| = |α|.In fact, we prove in this section Yomdin-Gromov's Lemma by induction. Wesummarize in the following diagram the di�erent dependences involved in theinduction:
P3(α, d)

��

))SSSSSSSSSSSSSS

P3(|α⊕ 1| + 1, d− 1)

��

P4(|α⊕ 1|, d− 1)

��

||x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

P5(|α⊕ 1|, d)

uullllllllllllll

P3(α⊕ 1, d)Increase of the dimension: [∀r ∈ N P3(r, d)] ⇒ P3((1, 0, . . . , 0), d+ 1)Proof. Let f : A ⊂]0, 1[d+1→]0, 1[ a Nash map, de�ned on a semi-algebraicopen set A ⊂ R
d+1. We work on An = {x ∈ A : d(x,Acn) > 1/n} in order toensure that f extends continuously on adh(An). The set An is a semi-algebraicopen set of degree bounded by a function of deg(A) and d (Corollary 1). Forsimplicity, we note A instead of An.



310 DAVID BURGUET Isr. J. Math.We consider the following semi-algebraic open sets:
A+ = {x ∈ A, |∂x1f(x)| > 1} and A− = int({x ∈ A, |∂x1f(x)| ≤ 1}).We have adh(A) = adh(A+)

⋃
adh(A−). Obviously adh(A+)

⋃
adh(A−) ⊂

adh(A). Let us show A ⊂ adh(A+)
⋃

adh(A−). Let y ∈ A, if y /∈ adh(A+),as A is open, there exists r > 0, such that the ball B(y, r) ⊂ A
⋂
Ac+ ⊂

{x ∈ A, |∂x1f(x)| ≤ 1} and thus y ∈ A−. Remark that deg(A+), deg(A−)are bounded by a function of deg(f) according to Corollary 1.According to P3(2, d) ⇒ P4(1, d) ⇒ P5(1, d+ 1), there exist (C1, 1) extend-able Nash triangular maps (φj)1≤j≤N , such that adh(A−) =
⋃

1≤j≤N−
φ̃j([0, 1]d)and such that N−, deg(φj) are bounded by a function of deg(A−), and thus bya function of deg(f). We have |∂x1(f ◦ φj)| ≤ 1, so the maps φi can be used tobuild a resolution of f .For A+, we consider the inverse of f . Observe �rst, that accordingto Corollary 5, we can assume that A+ is a slice of the following form

{(x1, y) ∈]0, 1[×A′
+ : ζ(y) < x1 < η(y)}, where A′

+ ⊂]0, 1[d is a semi-algebraicopen set of R
d and ζ, η : A′

+ →]0, 1[ are Nash maps.De�ne D+ = {(f(x1, y), y) : (x1, y) ∈ A+}. We de�ne g : A+ → D+,
g(x1, y1) := (f(x1, y), y)). The map g is a local di�eomorphism, by the localinversion theorem. Moreover, g is one to one, because g(x1, y) = g(x′1, y

′)implies y = y′, and f(x1, y) = f(x′1, y) implies x1 = x′1, because |∂x1f(x)| ≥ 1for x ∈ A+. The map g extends to a homeomorphism g : adh(A+) → adh(D+),since f is continuous on adh(A) (recall that we denote A := An).Observe that D+ is a semi-algebraic open set of R
d+1. On D+ we de�ne

φ: φ(t, u) := g−1(t, u) = (f(., u)−1(t), u). The Nash map φ : D+ → A+ istriangular and deg(φ) = deg(f). De�ne φ(t, u) = (x1, y). We compute:
Dφ(t, u) =

(
1

∂x1f(x1,y)
− 1
∂x1f

∇yf(x1, y)

0 Id

)
.As (x1, y) ∈ A+, we have |∂x1φ(t, u)| = | 1

∂x1f(x1,y)
| ≤ 1. Furthermore, wecheck

f ◦ φ(t, u) = t.Therefore, φ and f ◦ φ are (C(1,0,...,0), 1) extendable Nash triangular maps.In order to obtain a resolution, we apply again P5(1, d+ 1) to D+. That gives
(C1, 1) extendable Nash triangular maps ψj : ]0, 1[d+1→ D+, j ≤ N+, suchthat N+, deg(ψj) are bounded by a function of deg(D+), thus by a function of
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deg(f) and such that adh(D+) =

⋃
1≤i≤N+

ψ̃i([0, 1]d+1). Moreover, by applyingFact 4, we get:
|∂x1(φ ◦ ψj)| = |∂x1(φ)|.|∂x1 (ψ

1
j )| ≤ 1because ψj is triangular. We also have:

|∂x1(f ◦ φ ◦ ψj)| = |∂x1ψ
1
j | ≤ 1,where ψ1

j is the �rst coordinate of ψj . The parametrizations φ ◦ψj : ]0, 1[d+1 7→

]0, 1[d+1 are therefore (C(1,0,...,0), 1) extendable Nash triangular maps, such that:
• adh(A+) =

⋃N+

j=1 φ̃ ◦ ψ̃j([0, 1]d+1);
• each f ◦ φ ◦ ψj is a (C(1,0,...,0), 1) Nash map;
• deg(φ ◦ ψj), deg(f ◦ φ ◦ ψj) are bounded by a function of |α|, d, and
deg(f) according to Corollary 3.Finally, {φ1, . . . , φN−

, φ ◦ ψ1, . . . , φ ◦ ψN+} is a (C(1,0,...,0), 1)-resolutionof f .Increase of the derivation order: P3(s, d) ⇒ P3((s+ 1, 0, . . . , 0), d).Proof. Like in the case of dimension d = 1, we begin with the following reduc-tion.Claim 1: It is enough to show the result for a single (Cs, 1) extendable Nashmap f : A =]0, 1[d→]0, 1[.Proof of Claim 1. Assume that P3((s + 1, 0, . . . , 0), d) for a single (Cs, 1) ex-tendable a Nash map f : A =]0, 1[d→]0, 1[. The proof of Lemma 5 implies
P3((s + 1, 0, . . . , 0), d) for any family (gi : ]0, 1[d→]0, 1[)i=1,...,k of (Cs, 1) ex-tendable Nash maps. Let f : A ⊂]0, 1[d→]0, 1[ a Nash map, de�ned on asemi-algebraic open set A ⊂]0, 1[1. By applying Q3(s, d) to f , we obtain a
(Cs, 1) resolution (φni )i=1,...,Nn of f/An

, with An an adapted sequence. We ap-ply Q3((s+ 1, 0, . . . , 0), d) to the family (f ◦ φni , φ
n
i ) of (Cs, 1) extendable Nashmaps de�ned on ]0, 1[d. We conclude by constructing a ((s + 1, 0, . . . , 0),M)-adapted sequence for f with M = M(s, d, deg(f)), like in the proof ofLemma 5.Let f : ]0, 1[d→]0, 1[ be a (Cs, 1) Nash map.



312 DAVID BURGUET Isr. J. Math.We cut up ]0, 1[d according to the sign of ∂s+1f

∂xs+1
1

∂s+2f

∂xs+2
1

like in the �rst step ofthe proof:
A+ =

{
x ∈]0, 1[d,

∂s+1f

∂xs+1
1

(x)
∂s+2f

∂xs+2
1

(x) > 0
}and

A− = int
({
x ∈]0, 1[d,

∂s+1f

∂xs+1
1

(x)
∂s+2f

∂xs+2
1

(x) ≤ 0
})
.We have again adh(A) = adh(A+)

⋃
adh(A−). In the following, we consideronly A = A+, the case of A− being similar. According to Corollary 5, we can as-sume that A is a slice of the following form {(x1, y) ∈]0, 1[×A′ ζ(y)<x1<η(y)},where A′ ⊂]0, 1[d−1 is a semi-algebraic open set and ζ, η : A′ →]0, 1[ are Nashmaps.Applying estimate (2) obtained in Part 5 to the function x1 7→ ∂s+1f

∂xs+1
1

(x1, y)(we �x y), we get for (x1, y) ∈ A+,(3) ∣∣∣∂
s+1f

∂xs+1
1

(x1, y)
∣∣∣ ≤ 2

|x1 − ζ(y)|
.The induction hypothesis P3(s, d) implies P3(s+2, d−1) and P3((s+2, d−1)implies P4(s+1, d−1). Apply P4(s+1, d−1) to (ζ, η): there exist (Cs+1, d−1)extendable Nash triangular maps h : ]0, 1[d−1→]0, 1[d−1, of which the images ofthe extensions cover adh(A′), such that ζ ◦ h and η ◦ h are (Cs+1, d − 1) Nashmaps. De�ne ψ : ]0, 1[×]0, 1[d−1→ A,

ψ(v1, w) = (ζ ◦ h(w).(1 − v2
1) + η ◦ h(w).v2

1 , h(w)).The maps ψ are triangular, ‖ψ‖s+1 ≤ 2 and the images of their continuousextensions cover adh(A).In the new coordinates (v1, v2, . . . , vd) =: (v1, w), we have:
x1 − ζ(y) = ζ ◦ h(w).(1− v2

1) + η ◦ h(w).v2
1 − ζ(h(w)) = v2

1 .(η ◦ h(w)− ζ ◦ h(w))and therefore the previous estimate (3) becomes:(4) ∣∣∣∂
s+1f

∂xs+1
1

(ψ(v1, w))
∣∣∣ ≤ 2

v2
1 |η ◦ h(w) − ζ ◦ h(w)|

.
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∂s+1(f ◦ ψ)

∂vs+1
1

(v1, w) =(2v1)
s+1(η ◦ h(w) − ζ ◦ h(w))

∂s+1f

∂xs+1
1

(ψ(v1, w))

+R(η ◦ h(w) − ζ ◦ h(w), v1, (
∂kf

∂xk1
(ψ(v1, w)))k≤s),where R is a polynomial, which depends only on s and d. Using the lastinequality (4), the �rst term is less than 2s+2. Consider the second term.The map f is a (Cs, 1) Nash map, therefore, |∂

kf
∂xk

1
| ≤ 1, for k ≤ s. Thus

∣∣R(η ◦ h(w) − ζ ◦ h(w), v1,
(
∂kf
∂xk

1
(ψ(v1, w))

)
k≤s

)
∣∣ is bounded by a function of sand d, and hence ∣∣∂s+1(f◦ψ)

∂vs+1
1

∣∣ also. We apply Lemma 1 to control the derivativesof lower order than s of f ◦ ψ. Using Lemma 3, we can assume that ψ is a
(Cs+1, 1) Nash map and f ◦ ψ is a (C(s+1,0,...,0), 1) Nash map.We deal now with the last step of the proof.Control of the following derivative: P3(α, d) ⇒ P3(α ⊕ 1, d) with α 6=

(0, . . . , 0, s)Observe that the condition α 6= (0, . . . , 0, s) implies |α| = |α ⊕ 1|: the orderof the derivation is �xed.Proof. Like in Claim 1, we can assume that f : ]0, 1[d→]0, 1[ is a (Cα, 1) Nashmap.De�ne An =]1/n, 1− 1/n[d−1. According to Tarski's principle,
B =

{
(x1, y) ∈ adh(An) :

∣∣∣∂
α⊕1f

∂xα⊕1
(x1, y)

∣∣∣ = sup
t∈[1/n,1−1/n]

(∣∣∣∂
α⊕1f

∂xα⊕1
(t, y)

∣∣∣
)}is a semi-algebraic set of degree bounded by a function of deg(f) and s. Bythe de�nition of an adapted sequence, the sup above is �nite (recall that f isnot supposed to be analytic in a neighborhood of A, so that we cannot workdirectly with A). According to Proposition 1, B is covered by sets (Bi)i=1,...,N ,

Bi = {(x1, y) ∈]0, 1[×B′
i : γi(y) < x1 < ∆i(y)} or Bi = {(σi(y), y) ∈ B′

i} ,whereB′
i ⊂]1/n, 1−1/n[d−1 are semi-algebraic sets of R

d−1, such that⋃Ni=1B
′
i =

]1/n, 1 − 1/n[d−1 and where σi, γi,∆i : B′
i →]0, 1[ are Nash maps. In the �rstcase, we set σi := 1/2(∆i+γi). Afterwards, we consider only the sets B′

i, whichare open sets. Observe that for these sets we have⋃ adh(B′
i) = [1/n, 1−1/n]d−1.By using the Tarski's principle and Proposition 1, we check that N and thedegree of σi are bounded by a function of deg(f) and |α|. De�ne the Nash
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i →]0, 1[, gi(y) = 1

2
∂(α⊕1)1f

∂x
(α⊕1)1
1

(σi(y), y), where (α ⊕ 1)i denotes the
i-th coordinate of α ⊕ 1. The map gi is onto ]0, 1[, because f is a (Cα, 1)map and ((α ⊕ 1)1, 0, . . . , 0) � α. The induction hypothesis P3(α, d) implies
P3(|α|+1, d−1) and thus P4(|α|, d−1), which applied to (σi, gi) gives (C|α|, 1)extendable Nash triangular maps hi,k : ]0, 1[d−1→ B′

i, such that gi ◦ hi,k and
σi ◦ hi,k are (C|α|, 1) Nash and such that ⋃k h̃i,k([0, 1]d−1) = adh(B′

i).Then, hi,k being triangular, we have according to Fact 4:
2
∂((α⊕1)2,...,(α⊕1)d)(gi ◦ hi,k)

∂x((α⊕1)2,...,(α⊕1)d)
(y) =

∂α⊕1f

∂xα⊕1
(σi ◦ hi,k(y), hi,k(y))

×
(∂hi,k
∂x2

)(α⊕1)2
· · ·
(∂hi,k
∂xd

)(α⊕1)d

+Rwhere R is a polynomial, depending only on α, in the derivatives of f of order
� α and in the derivatives of hi,k and σi ◦ hi,k of order less than |α|. The map
hi,k is a (C|α|, 1) Nash map and by hypothesis f is a (Cα, 1) Nash map, so thatwe have |R| < C(|α|, d), where C is a function 4 of |α| and d. After all gi ◦ hi,kis a (C|α|, 1) Nash map. Hence,

∣∣∣∂
α⊕1f

∂xα⊕1
(σi ◦ hi,k(y), hi,k(y))

(∂hi,k
∂x2

)(α⊕1)2
· · ·
(∂hi,k
∂xd

)(α⊕1)d
∣∣∣

≤
∣∣∣2∂

((α⊕1)2,...,(α⊕1)d)(gi ◦ hi,k)

∂x((α⊕1)2,...,(α⊕1)d

∣∣∣+ |R| < C(|α|, d)De�ne φi,k : ]0, 1[d→]0, 1[d by:
φi,k(x1, y) = (1/n+ bnx1, hi,k(y)), with bn := 1 − 2/n.The parametrization φi,k is a (Cα⊕1, 1) Nash triangular map:

• Using again the triangularity of hi,k and Fact 4, we get: ∂α⊕1(f◦φi,k)
∂xα⊕1 =

∂α⊕1f
∂xα⊕1 (1/n+bnx1, hi,k(y))×(bn)

(α⊕1)1(
∂hi,k

∂x2
)(α⊕1)2 . . . (

∂hi,k

∂xd
)(α⊕1)d +S,where S is a polynomial in ∂βf

∂xβ with β � α and in the derivatives of hi,kof order less than |α|, S depending only on α. Threfore |S| < C(|α|, d).4 In order to simplify the notations, we will denote by C any function of |α| and d
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∣∣∣∂
α⊕1f

∂xα⊕1
(1/n+ bnx1, hi,k(y)) ×

(∂hi,k
∂x2

)(α⊕1)2
. . .
(∂hi,k
∂xd

)(α⊕1)d
∣∣∣

≤
∣∣∣∂
α⊕1f

∂xα⊕1
(σi ◦ hi,k(y), hi,k(y)) ×

(∂hi,k
∂x2

)(α⊕1)2
. . .
(∂hi,k
∂xd

)(α⊕1)d
∣∣∣

< C(|α|, d),thus
∣∣∣∂
α⊕1(f ◦ φi,k)

∂xα⊕1

∣∣∣

≤
∣∣∣∂
α⊕1f

∂xα⊕1
(1/n+ bnx1, hi,k(y)) ×

(∂hi,k
∂x2

)(α⊕1)2
. . .
(∂hi,k
∂xd

)(α⊕1)d
∣∣∣+ |S|

< C(|α|, d)

• Finally for β � α, only the derivatives of f of order � α take part inthe expression ∂β(f◦φi,k)
∂xβ , again because of the triangularity of hi,k andFact 4. Hence ∣∣∂β(f◦φi,k)
∂xβ

∣∣ < C(|α|, d).Lemma 3 gives us a (Cα, 1,M)-resolution of f/An
, with

M = M(|α|, d, deg(f)).References[1] R. Abraham and J. Robbin, Transversal Mappings and Flows, W. A. Benjamin, Inc.,New York-Amsterdam, 1967.[2] R. Benedetti and J. -L. Riesler, Real Algebraic Geometry and Semi-Algebraic Sets,Hermann, Paris, 1990.[3] M. Boyle, D. Fiebig and U. Fiebig, Residual entropy, conditional entropy and subshiftcovers, Forum Math. 14 (2002), 713�757.[4] M. Boyle and T. Downarowicz, The entropy theory of symbolic extension, InventionesMathematicae 156 (2004), 119�161.[5] J. Buzzi, Ergodic and topological complexity of dynamical systems, Course givenduring the Research trimester Dynamical Systems, 2002, Pise.[6] J. Buzzi, Intrinsic ergodicity of smooth interval maps, Israel Journal of Mathematics100 (1997), 125�161.[7] J. Bochnak, M. Coste and M. F. Roy, Géométrie algébrique réelle, Ergebnisse derMathematik und ihrer Grenzgebiete, 3 Folge, Band 12, Springer-Verlag, Berlin, Hei-delberg, and New York, 1987.[8] G. Comte and Y. Yomdin, Tame Geometry with applications in smooth Analysis,Lecture Notes in Mathematics 1834, Springer-Verlag, Berlin, 2004.



316 DAVID BURGUET Isr. J. Math.[9] M. Coste, Ensembles semi-algébriques , in Lecture Notes in Mathematics 959Géométrie algébrique réelles et formes quadratiques, Springer-Verlag, Berlin, 1982,pp. 109-138.[10] W. Cowieson, L. -S. Young, SRB measures as Zero-noise limits, Ergodic Theory andDynamical Systems 25 (2005), 1115�1138.[11] T. Downarowicz, S. Newhouse, Symbolic extensions and smooth dynamical systemsInventiones Mathematicae (2004), (on line).[12] M. Gromov, Entropy, homology and semi-algebraic geometry, Séminaire Bourbaki,vol. 1985/1986, Astérisque 145�146 (1987), 225-240.[13] S. Newhouse, Continuity properties of the entropy, Annals of Mathematics 129(1989), 215�237.[14] J. Pila and A. J. Wilkie, The rational points of a de�nable set, Duke MathematicalJournal 133 (2006), 591�616.[15] Y. Yomdin, Volume growth and entropy, Israel Journal of Mathematics 57 (1987),285�300.[16] Y. Yomdin, Cr-resolution, Israel Journal of Mathematics 57 (1987), 301�317.


